Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных




Объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:

• иметь высокую вариабельность;

• быть сильно коррелированными с объясняемой переменной;

• быть слабо коррелированными между собой;

• быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих*.

Объясняющие переменные подбираются с помощью статистических методов.

Процедура подбора переменных состоит из следующих этапов:

1.На основе накопленных знаний составляется множество так называемых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать Х1 Х2,.., Хт.

2.Собирается статистическая информация о реализациях как объясняемой переменной, так и потенциальных объясняющих переменных. Формируется вектор у наблюдаемых значений переменной Y и матрица X наблюдаемых значений переменных Х1, Х2,..., Хт в виде

3. Исключаются потенциальные объясняющие переменные, характеризующиеся слишком низким уровнем вариабельности.

4.Рассчитываются коэффициенты корреляции между всеми рассматриваемыми переменными.

5.Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры

Вектор и матрица коэффициентов корреляции

Для оценивания силы линейной зависимости объясняемой переменной Y от потенциальных объясняющих переменных Х1, Х2,.., Хт рассчитываются коэффициенты корреляции

Эти коэффициенты представляются в виде вектора корреляции:

Коэффициенты корреляции между потенциальными объясняющими переменными Х1, Х2,..., Хт рассчитываются по формуле

образуют матрицу корреляции R:

Матрица R симметрична, т. е. rij= rji

 

Свойства дисперсии случайной переменной

Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата её отклонения от математического ожидания: D(X)=M[X-M(X)]2 или D(X)=M(X-a)2 где a=M(X).

(Для дисперсии СВ Х используется также обозначение Var(X).)

Дисперсия характеризует отклонение (разброс, рассеяние, вариацию) значений СВ относительно среднего значения.

Если СВ Х – дискретная с конечным числом значений, то

.

Дисперсия D(X) имеет размерность квадрата СВ, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину .

Свойства дисперсии СВ:

1) D(C)=0, где C – постоянная величина;

2) D(kX)=k2D(X);

3) D(X)=M(X2)-a2 где a=M(X);

4)D(X+Y)=D(X-Y)=D(X)+D(Y), где X и Y – независимые случайные величины.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1617 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2018 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.141 с.