Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Автокорреляция регрессионных остатков. Методы выявления




Регрессионная модель МНК позволяет получить несмещенную оценку с минимальной дисперсией только тогда, когда остатки независимы друг от друга. Нарушение условия независимости остатков () называется автокорреляцией. Если имеет место автокорреляция остатков, то коэффициенты регрессии не смещены, но стандартные ошибки недооценены, а проверка статистической значимости коэффициентов ненадежна. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих наблюдений. Автокорреляция остатков обычно встречается в регрессионном анализе при использовании данных временных рядов. В силу этого в дальнейших выкладках вместо символа i порядкового номера наблюдения будем использовать символ t, отражающий момент наблюдения. Объем выборки при этом будем обозначать T.

Причины автокорреляции:

- ошибки спецификации – неучет в модели важной объясняющей переменной или неправильный выбор формы зависимости;

- эффект паутины – многие экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).

Методы обнаружения автокорреляции

В силу неизвестности значений параметров уравнения регрессии неизвестными будут также и истинные значения отклонений ,t= 1, 2,..., Т. Поэтому выводы об их независимости осуществляются на основе оценок εt,t= 1, 2,..., Т, полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

Метод рядов.

Последовательно определяются знаки отклонений ,t= 1, 2,..., Т.

Например, (- - - - -)(+++++++)(- - -)(++++)(-),

т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-».

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда.

Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений п, то вполне вероятна положительная автокорреляция. (В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов). Если же рядов слишком много, то вероятна отрицательная автокорреляция. Для более детального анализа предлагается следующая процедура. Пусть

п — объем выборки;

п1 — общее количество знаков «+» при п наблюдениях;

п 2— общее количество знаков «—» при п наблюдениях;.

k— количество рядов.

Если при достаточно большом количестве наблюдений (n1>10, п 2>10) количество рядовkлежит в пределах

то гипотеза об отсутствии автокорреляции не отклоняется.

Для небольшого числа наблюдений (n1<20,n2<20) Свед и Эйзенхарт разработали таблицы критических значенийk1,k2отn1,n2.

Если , то говорят об отсутствии автокорреляции;

если , говорят о положительной автокорреляции остатков;

если , говорят об отрицательной автокорреляции остатков.

В нашем примере: n=20,n1=11,n2=9,k=5. По таблицамk1=6,k2=16. Пронимается предположение о наличии положительной автокорреляции на уровне значимости 0,05.

Для проверки автокорреляции первого порядка (для регрессии временных рядов) необходимо рассчитать критерий Дарбина—Уотсона. Он определяется так:

.

Эмпирическое правило гласит, что если критерий Дарбина- Уотсона равен двум, то не существует положительной автокорреляции, если он равен нулю, то имеет место совершенная положительная автокорреляция, а если он равен четырем, то имеет место совершенная отрицательная автокорреляция. Критерий Дарбина—Уотсона имеет выборочное распределение, которое обладает двумя критическими значениями: dL – нижняя границаи dU – верхняя граница.

Если , то существует положительная автокорреляция;

, - вывод о наличии автокорреляции не определен;

- нет автокорреляции;

- существует отрицательная автокорреляция.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1403 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2392 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.