Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Условия квазистационарности поля




 

 

1) Мы уже рассмотрели:

 

2) Характерные параметры линейного проводника характерных параметров поля .

- расстояние, на котором поле существенно меняется за время (если пускаем волну, то - длина волны; если изменение поля гармоническое, то - период).

3) Если длина пробега носителя тока – электрона , то она гораздо меньше параметра поля , т.е. .

4) Если носителями тока являются перемещающиеся электроны, то вводим характеристику , где - длина пробега электрона, а - его скорость. Тогда:

3) и 4) позволяют записывать закон Ома без учёта пространственно-временной дисперсии, в простой форме: .

 

 

Глубина проникновения квазистационарного электромагнитного поля.

 

 

Уравнения Максвелла в случае квазистационарности:

Здесь учтено, что и .

На два последних уравнения Максвелла подействуем :

- уравнение квазистационарного поля

Аналогично получаем для :

Пусть ; , тогда:

где

Размерность

- параметр глубины проникновения поля . Мы получили уравнение Гельмгольца:

Вид решения для зависит от формы области, где ищется решение. Если ищем в полуплоскости, то

- если взять

тогда получим . Это даёт граничное условие

Если взять , то это даст граничное условие , не объясняется ни физически, ни подтверждается экспериментально. Таким образом, следует брать

-параметр:

Для поля аналогично:

- решение для полупространства.

Будем учитывать проникновение полей и только на глубину , т.к. дальше их проникновение мало и его можно не учитывать, хотя оно существует.

Функция Грина уравнения Гельмгольца.

 

-уравнение Гельмгольца

в правой части этого уравнения – источник , в левой – поле источника .

,

Для нахождения решения уравнения Гельмгольца вводят функцию Грина, удовлетворяющую условию:

Здесь надо использовать разложение функции Грина в интеграл Фурье:

где

Для -функции:

Подействуем на функцию Грина оператором :

Используем то, что , а следовательно :

Тогда перепишется в виде:

Равенство этих интегралов приводит к равенству фурье-образов:

Тогда фурье-образ функции Грина:

Теперь надо найти оригинал. Используем для этого теорию вычетов:

Пусть - угол между и . Обозначим . Введём сферические переменные .

, тогда .Следовательно

Используем теорию вычетов. У этого интеграла есть два полюса: и . Надо использовать при расчёте полюс , чтобы получить физически обоснованную ассимптотику.

Переходим в комплексную плоскость, замыкаем контур обхода сверху. Используем фиктивный переход:

Это позволяет получить нужную асимптотику.

- функция Грина уравнения Гельмгольца

Обозначим

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 742 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.