Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение длины отрезка по его проекциям




Отрезки прямых уровня (фронтали и горизонтали) – проецируются в натуральную величину соответственно на фронтальную и горизонтальную плоскости проекции.

 

Отрезки проецирующих прямых (перпендикулярных плоскости) проецируются на две плоскости проекций в истинную величину. Во всех остальных случаях отрезки прямых проецируются с искажением.

 

Для того чтобы определить натуральную величину отрезка прямой по его ортогональному чертежу рассмотрим пространственную модель отрезка АВ, спроецированного на плоскости проекций П1 и П2.

 

Проведём отрезок АС || А1В1 и рассмотрим прямоугольный треугольник АВС. Отрезок АВ является его гипотенузой, а катетами - отрезки АС, равный по длине отрезку А1В1, и ВС, длина которого равна разности расстояний от концов отрезка АВ до П1.

 

На ортогональном чертеже проекции точки определяют ее координаты Х, Y, Z. Длина отрезка АВ вычисляется по формуле: |AB| = корень ((XB-XA)2+(YB-YA)2+(ZB-ZA)2) = корень ((XB-XA)2+(YB-YA)2+(B2C2)2) = корень((A1B1)2+(B1B0)2).

 

Графически на чертеже эту задачу решают по схеме:

Обозначить вторую проекцию С2 точки С;

Определить длину отрезка В2С2, как разность глубин точек А и В относительно П1.

На плоскости П1 из точки В1 провести прямую отрезку А1В1 и на этой прямой отложить отрезок В1B0, равный В2С2. Получится прямоугольный треугольник А1В1B0.

Гипотенуза А1B0 прямоугольного треугольника А1В1B0 равна натуральной величине отрезка АВ, а угол a - угол наклона отрезка АВ к фронтальной плоскости проекций.

Следы прямой

Следом прямой называется точка пересечения прямой с плоскостью проекций. Горизонтальный след –точка пересечения с горизонтальной плоскостью проекций П1. Фронтальный след – точка пересечения с фронтальной плоскостью проекций П2. Профильный след – точка пересечения с профильной плоскостью проекций П3.

Для построения следов прямой общего положения на комплексном чертеже необходимо продлить проекции прямой до пересечения с осями координат. На рис.3.2 показано построение горизонтального и фронтального следов прямой n. Для этого продлевались горизонтальная проекция n1 и фронтальная проекция n2 до пересечения с осью x12.

 

Рис.3.2. Построение следов прямой общего положения:

М – горизонтальный след; N – фронтальный след

 

Какие взаимные положения возможны между прямой и плоскостью?

Ответ:

В пространстве прямая может либо принадлежать плоскости, либо не принадлежать плоскости. Это утверждение справедливо и для точки. Прямая принадлежит плоскости, если она проходит:

Через две точки, принадлежащие плоскости;

Через точку плоскости параллельно любой прямой этой плоскости.

Сформулируем условие принадлежности прямой плоскости как аксиомы:

Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат этой плоскости.

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости.

Определение: прямая параллельна плоскости, если она параллельна прямой, принадлежащей данной плоскости.

Также прямая может пересекаться с плоскостью.

Если прямая перпендикулярна плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 2460 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.