Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейные дифференциальные уравнения. Примеры




 

Опр. Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x) и её производные входят линейно, т.е. в первой степени:

; (19)

Если старший коэффициент q0 (x) отличен от нуля на интервале (a, b), т.е. для , то, умножая (19) на , приводим уравнение к виду со старшим коэффициентом, равным 1:

; (20)

; дальше мы будем рассматривать уравнение (20).
Если правая часть уравнения тождественно равна нулю на рассматриваемом интервале (f(x)=0 при ), то уравнение называется однородным. Таким образом, однородное уравнение - это уравнение вида

; (21)

Задача Коши для уравнений (20) и (21) ставится также, как и для общего уравнения n-го порядка (17) : требуется найти решение уравнения (20) или (21), удовлетворяющее начальным условиям

(22)

где y0, y1, y2, …, yn-1 - заданные числа. Для уравнения (17) теорема существования и единственности решения задачи Коши требовала непрерывности функции и её производных ; если привести (20) к виду (17):
,
то . Таким образом, условия теоремы Коши приводят к необходимости непрерывности функций f(x) и pi(x), i = 1, 2, …, n. Далее, вывод теоремы Коши для уравнения (17) заключался в том, что найдётся окрестность точки x0, в которой существует однозначно определённое решение задачи Коши; для линейных уравнений (20) и (21) вывод более глобален: единственное решение существует на всём интервале (a, b), на котором выполняются условия теоремы:
Теорема существования и единственности решения задачи Коши для линейного уравнения: если функции f(x), pi(x), i = 1, 2, …, n непрерывны на интервале (a, b), x0 - произвольная точка этого интервала, то для любых начальных условий (22) существует единственная функция y(x), определённая на всём интервале (a, b) и удовлетворяющая уравнению (20) и начальным условиям (22).
Всё дальнейшее изложение ведётся в предположении, что условия теоремы существования и единственности решения задачи Коши выполняются, даже если это не оговаривается специально.

35 Однородные дифференциальные уравнения. Примеры.

Обыкновенное уравнение первого порядка называется однородным относительно x и y, если функция является однородной степени 0:

.

Однородную функцию можно представить как функцию от :

.

Используем подстановку , а затем воспользуемся: . Тогда дифференциальное уравнение сводится к уравнению с разделяющимися переменными:

.

Однородность по правой части

Дифференциальное уравнение является однородным, если оно не содержит свободного члена — слагаемого, не зависящего от неизвестной функции. Так, можно говорить, что уравнение — однородно, если .

В случае, если , говорят о неоднородном дифференциальном уравнении.

Именно для решения линейных однородных диф. уравнений была построена целая теория, чему способствовало выполнение у них принципа суперпозиции.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1868 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.