Следующая теорема выражает важный для практических целей признак строгого возрастания и строгого убывания функции и указывает правило для определения интервалов, на которых функция возрастает и убывает (интервалов монотонности функции).
Теорема. | (достаточный признак возрастания и убывания функции на интервале) Если во всех точках некоторого интервала первая производная , то функция на этом интервале возрастает. Если же во всех точках некоторого интервала первая производная , то функция на этом интервале убывает. |
Правило. Для определения интервалов строгого возрастания и строгого убывания функции следует решить неравенства:
и .
Пример. Найти интервалы монотонности функции
.
Решение. Областью определения данной функции является вся ось . Находим производную . Чтобы найти интервалы возрастания функции, решим неравенство или ; чтобы найти интервалы убывания функции, решим неравенство . Корни квадратного трёхчлена равны 1 и 3, поэтому распределение знаков квадратного трехчлена имеет вид
+ – +
1 3
Следовательно, на интервалах и функция возрастает, а на интервале функция убывает.
Экстремум функции
Если для всех значений из некоторой окрестности точки выполняется неравенство , то называют точкой локального максимума функции , а – локальным максимумом функции. Если для всех значений из некоторой окрестности точки выполняется неравенство , то называют точкой локального минимума функции , а – локальным минимумом функции. Минимумы и максимумы функции называют ее экстремумами.
Необходимый и достаточный признаки экстремума функции дают следующие две теоремы
ТЕОРЕМА 1 | (необходимый признак экстремума) Если точка является точкой экстремума, то в этой точке производная равна нулю или не существует. |
Эта теорема имеет простую геометрическую интерпретацию.
Рис. 4 Рис. 5 Рис. 6
На рис. 4 касательная к графику функции в точке – точка экстремума – параллельна оси , т.е. угловой коэффициент (а это и есть производная) равен нулю.
На рис. 5 касательная в точке экстремума перпендикулярна оси , на рис. 6 касательная в точке с абсциссой не существует. В обоих случаях производная в точке не существует.
Точки, в которых первая производная равна нулю, а также, в которых она не существует, но функция сохраняет непрерывность, называются критическими.
Следует уяснить, что указанный признак экстремума является только необходимым, но отнюдь не достаточным: производная функции может быть равна нулю или не существовать не только в тех точках, в которых функция достигает экстремума. Например, производная функции равна нулю в любой точке, но экстремума у этой функции нет (рис. 7). Поэтому, определив критические точки, в которых функция может достигать экстремума, надо каждую из точек в отдельности исследовать на основании достаточных условий существования экстремума.
0
Рис. 7
ТЕОРЕМА 2 | (достаточный признак экстремума) Если при переходе через критическую точку производная меняет знак, то критическая точка является точкой экстремума. Это точка максимума, если производная меняет знак с плюса на минус, и точка минимума, если производная меняет знак с минуса на плюс. |
Пример. Исследовать на экстремум функцию .
Решение.
1. Область определения .
2. Находим критические точки, для чего найдем производную и приравняем ее к нулю . Отсюда , , . Точек, где не существует, нет.
3. Исследуем критические точки по достаточному признаку экстремума. Это удобно делать в таблице, куда заносятся критические точки и точки разрыва функции (в данном примере точек разрыва нет).
- | - | ||||||
нет экстремума | нет экстремума |
Для нахождения знака производной достаточно подставить в нее любое значение из рассматриваемого интервала. Так, исследуя интервал , можно взять, например, точку и подставить это значение в производную: . Исследовав, указанным образом знаки производной в интервалах , замечаем, что производная меняет знак при переходе через точку 0 (с “+” на “-”). Значит, – точка максимума. Значение функции в этой точке .
Точки перегиба
График функции называется выпуклым на интервале , если он расположен ниже касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 а).
График функции называется вогнутым на интервале , если он расположен выше касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 б).
Рис. 8 а Рис. 8 б
ТЕОРЕМА | (достаточный признак выпуклости (вогнутости) графика функции) Если на интервале , то график функции является выпуклым на этом интервале; если же , то на интервале график функции – вогнутый. |
Точка кривой, отделяющая ее выпуклую дугу от вогнутой, называется точкой перегиба.
Точки кривой, в которых вторая производная или не существует, называются критическими точками второго рода. Точки перегиба следует искать среди критических точек второго рода.
В критической точке второго рода перегиб будет только в том случае, когда при переходе через эту точку меняет знак.
Правило. Для определения точек перегиба кривой надо определить все критические точки второго рода и рассмотреть знаки в каждых двух соседних интервалах, на которые эти точки делят область определения функции. В случае, если знаки в двух соседних интервалах различны, критическая точка второго рода является точкой перегиба. Если же в двух соседних интервалах имеет один и тот же знак, то в рассматриваемой критической точке второго рода перегиба нет. В точке перегиба кривая пересекает касательную.
Пример. Определить интервалы выпуклости и вогнутости, точки перегиба графика функции .
Решение. Область определения функции – интервал .
Найдем первую и вторую производные функции
,
.
Так как при любом значении , то кривая вогнута на всем интервале . Точек перегиба нет.
Пример. Определить интервалы выпуклости и вогнутости и точки перегиба графика функции .
Решение. Область определения функции – интервал .
Найдем первую и вторую производные функции
, .
Решаем уравнение и находим, что . Это единственная критическая точка. Она делит область определения функции на два интервала и .
– +
На интервале кривая выпукла , а на интервале – вогнута . Таким образом, при переходе через точку вторая производная меняет знак. Эта точка является точкой перегиба. Ее координаты .
Асимптоты
Определение. | Если расстояние от кривой , имеющей бесконечную ветвь, до некоторой определенной прямой по мере удаления точки по этой кривой от начала координат в бесконечность, стремится к нулю, то прямая называется асимптотой данной кривой. |
Различают асимптоты: вертикальные и наклонные.
1. Кривая имеет вертикальную асимптоту , если при , или при . Для определения вертикальных асимптот надо отыскать те значения аргумента, вблизи которых неограниченно возрастает по абсолютной величине. Если такими значениями аргумента являются , то уравнения вертикальных асимптот будут
; ; …
Вертикальные асимптоты – это нули знаменателя функции. Например, . Здесь две вертикальные асимптоты: ,
2. Для определения наклонной асимптоты кривой надо найти числа и по формулам
,
(иногда следует отдельно рассматривать случаи и ).