I семестр
Занятие 1
1. Свойства и вычисление определителей различных порядков. Решение линейных и алгебраических уравнений по формулам Крамера.Матрицы и действия над ними. Обращение матрицы. Решение систем линейных уравнений матричным способом.
Линейные операции над векторами. Скалярное произведение. Действия над векторами в координатной форме.Векторное и смешанное произведения векторов.
Простейшие задачи аналитической геометрии. Прямая на плоскости. Решение задач на прямую с использованием различных форм уравнения прямой на плоскости.Кривые второго порядка. Окружность, эллипс, гипербола, парабола. Приведение уравнений 2-го порядка к каноническому виду.Плоскость. Взаимное расположение плоскостей. Прямая в пространстве. Прямая и плоскость, пересечение, угол между ними.
2. Функция. Обзор свойств основных элементарных функций. Построение графиков элементарных функций путем преобразования графиков основных элементарных функций. Построение графиков в полярной системе координат.Предел функции непрерывного аргумента. Вычисление пределов алгебраических выражений.Первый и второй замечательные пределы, следствия. Эквивалентные величины.Непрерывность функции. Точки разрыва. Схематическое построение графиков разрывных функций.
Занятие 2
1. Производная. Правила дифференцирования. Дифференцирование сложных функций. Логарифмическое дифференцирование. Дифференцирование функций, заданных параметрически и неявно. Дифференциал и применение его к приближенным вычислениям. Производные высших порядков. Касательная и нормаль к кривой.
Правило Лопиталя. Экстремум функции. Наибольшее и наименьшее значение функции на отрезке. Задачи на отыскание наибольшего и наименьшего значения величин. Полное исследование функций и построение графиков.
2. Частные производные. Полный дифференциал, его связь с частными производными.
Дифференцирование сложной функции нескольких переменных.
Экстремум функции нескольких переменных. Необходимые условия экстремума.
Наибольшее и наименьшее значения функции двух переменных в замкнутой области.
II семестр
Занятие 3
1. Комплексные числа и действия над ними.
2. Простейшие приемы интегрирования. Интегрирование по частям и заменой переменной. Разложение рациональной дроби на простейшие дроби. Интегрирование простейших рациональных дробей. Интегрирование дробно-рациональных функций.
3. Интегрирование некоторых тригонометрических выражений. Интегрирование некоторых иррациональных функций.
Занятие 4
1. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Замена переменной. Интегрирование по частям.Вычисление несобственных интегралов I-го и II-го рода. Сходимость.Вычисление площадей плоских фигур в декартовых и полярных координатах. Вычисление длин дуг, объемов тел вращения. Решение задач физики и механики.
2. Вычисление двойных интегралов в декартовых и полярных координатах. Вычисление объемов тел, площадей плоских фигур с помощью двойных интегралов. Некоторые задачи механики.
III семестр
Занятие 5
1. Дифференциальные уравнения 1-го порядка с разделяющимися переменными, однородные. Линейные уравнения, уравнения Бернулли. Уравнения в полных дифференциалах.Дифференциальные уравнения 2-го порядка, допускающие понижение порядка.Линейные уравнения второго порядка с постоянными коэффициентами: однородные и неоднородные.
Занятие 6
1. Исследование числовых рядов на сходимость по определению. Признаки сравнения. Признаки Даламбера, Коши, интегральный признак Коши.Знакопеременные и знакочередующиеся ряды. Признак Лейбница.Определение интервалов сходимости степенных рядов. Разложение функций в ряд Тейлора и Маклорена.
IV семестр
Занятие 7
1. Основные формулы комбинаторики. Непосредственное вычисление вероятности (классическая формула).Операции над событиями. Вычисление вероятностей суммы и произведения событий. Условные вероятности. Повторные испытания. Схема Бернулли. Формула полной вероятности и формула Байеса.Дискретная случайная величина, законы ее распределения и числовые характеристики. Непрерывные случайные величины, законы их распределения и характеристики.
Занятие 8
1. Вариационный ряд. Гистограмма, эмпирическая функция распределения, выборочные средняя и дисперсия. Построение доверительного интервала для математического ожидания и дисперсии нормально распределенной случайной величины. Статистическая проверка статистических гипотез.