Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Разные способы расчета медианы и предполагаемые ими модели




Опишем разные способы расчета медианы на примере.

Предположим, что для 10 школьников значения коэффициента IQ, определенные с помощью шкалы интеллекта Стенфорда-Бине, оказались равными:

113, 120, 119, 115, 122, 126, 120, 112, 120, 119.

Известно, что значением коэффициента может быть любое целое число от 0 до 150. Покажем, каким способами можно рассчитать медиану этого распределения.

Прежде всего необходимо определить тип используемой шкалы. Учитывая, что множество шкальных значений велико и что пороги различимости различий между соседними шкальными значениями для человека (и для респондента, и для социолога) достаточно велики, будем считать, что равенства типа 128-127=113-112 отражают реальность. Поэтому будем считать шкалу интервальной (полагаем очевидным то, что отношения равенства и порядка между шкальными значениями тоже отражают одноименные эмпирические отношения).

Способ расчета медианы и, как следствие, получаемое значение искомой величины определяется модельными соображениями, интерпретацией исходных данных (связанной в первую очередь с нашими представлениями о порождении данных и о соотнесении выборки и генеральной совокупности). Рассмотрим возможные варианты.

а) Выборка – это и есть генеральная совокупность. Кроме названных чисел у нас в принципе ничего нет. Тогда медиану целесообразно найти с помощью вариационного ряда:

112, 113, 115, 119, 119, 120, 120, 120, 122, 126

Ме = 119,5

В таком случае естественной будет следующая функция распределения.

Рис. 1. Вид функции распределения при отождествлении выборки с генеральной совокупности

Однако более отвечающей реальности (хотя и опирающейся на непроверяемые модельные соображения) представляется другая функция распределения. В ее основе лежат два предположения. Первое состоит в том. что, вообще говоря, в качестве значения нашей переменной может служит любое действительное число из рассматриваемого диапазона. Подчеркнем, что здесь фактически две посылки: первая состоит в том, что в принципе нам могут встретиться любые целочисленные значения; против нее вряд ли кто-либо будет возражать; вторая же – говорит о возможности встретить нецелочисленные значения. Последняя посылка обычно по вполне понятным причинам вызывает сомнения. Принять ее – значит полагать, что в принципе измеряемая переменная непрерывна, что к ее дискретности приводит несовершенство используемого способа измерения и отсутствие более адекватных измерительных алгоритмов. После принятия указанного предположения функцию распределения естественно представлять следующим образом (отрезки построенной ломаной линии соединяют левые концы стрелок с предыдущего рисунка).

Второе предположение есть предположение о постепенности, равномерности накопления объектов в каждом заданном выборкой интервале. Так, если в процессе построения графика накопленных частот (выборочного аналога функции распределения) в точке Х = 115 у нас “накопилось” 30% объектов, а в точке 119 – уже 50%, то мы считаем, что 20% объектов, попавших в интервал (115, 119), равномерно распределены в этом интервале и что, вследствие этого, соответствующий фрагмент функции распределения есть отрезок прямой, соединяющий точки (115, 30) и (119, 50). Заметим, что здесь у нас не встает вопрос о том, к какому из двух соседних интервалов относить точку их “стыка”.

Медиана в таком случае находится традиционным способом, отраженном на рисунке. Заметим, что в рассматриваемой ситуации она равна 119 (а не 119,5, как выше).

Рис. 2. Вид функции распределения при предположениях (а) о непрерывности рассматриваемой случайной величины и (б) равномерном накоплении единиц совокупности в каждом заданном выборкой интервале. Ме = 119

 

На деле социолог обычно пользуется еще более сильным предположением. А именно, при высказанных выше предположениях он задает некоторое разбиение диапазона изменения рассматриваемого признака на интервалы (о встающих здесь проблемах мы говорили в п. 1.1.2) и полагает, что в действительности для него при рассмотрении какого-либо конкретного объекта имеет смысл не то, какое именно значение признака этому объекту отвечает, а то, в какой интервал это значение попадает. При построении выборочного представления функции распределения доля объектов, отвечающих какому-либо интервалу, откладывается, вообще говоря, от любой точки последнего. На следующих двух рисунках отражены наиболее распространенные варианты: на первом – указанная доля откладывается от середины интервала, на втором – от его правого конца. Значения медиан обозначены на рисунках.

Рис. 3. Вид функции распределения при предположениях (а) о непрерывности рассматриваемой случайной величины и (б) заданном априори разбиении на интервалы диапазона ее изменения; (в) отнесении точки “стыка” двух интервалов направо; (г) равномерном накоплении единиц совокупности в промежутке от середины одного интервала до середины другого. Ме = 117,5.

Рис. 4. Вид функции распределения при предположениях (а) о непрерывности рассматриваемой случайной величины и (б) заданном априори разбиении на интервалы диапазона ее изменения; (в) отнесении точки “стыка” двух интервалов направо; (г) равномерном накоплении единиц совокупности в каждом интервале. Ме = 119

Приложение 2





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 408 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2431 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.