Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение задачи линейного программирования




Симплекс-методом

Существо симплекс-метода состоит в следующем. Прежде всего, находится допустимое базис­ное решение. Его можно найти, приняв из числа п переменных какие-либо пm переменных за свободные, приравняв их нулю и решив получившуюся систему уравнений. Если при этом некоторые из базисных переменных окажутся отрица­тельными, то нужно выбрать другие свободные перемен­ные, т е перейти к новому базису.

Каждое базисное реше­ние, проверяется, на достижение минимума целевой функции.Если минимум не достигут, то ищут новое допустимое базисное решение, но не любое, а такое, которое уменьшает зна­чение целевой функции.Затем процедура повторяется.

Решение линейной задачи симплекс-методом ведется в следующей последовательности.

1. Из вектора переменных размерностью n выбирают переменные, число которых равное числу уравнений ограничений m, их принимают за однозначно определенные (базисные) переменные. Остальные (n-m) переменных принимают за свободные и приравнивают их нулю.

2. Базисные переменные, исходя из уравнений ограничений, выражают через свободные переменные в виде линейной комбинации

.

После преобразования составляется каноническая форма записи модели, из которой определяются хi. Эту запись иногда называют симплекс-планом или опорным планом. Модель записывается в виде следующей системы уравнений:

.

Для того чтобы проверить отвечает ли составленная система поставленной цели (определение оптимальных значений хi), необходимо полученные значения базовых переменных подставить в целевую функцию

,

где - значение целевой функции, определяемое свободными членами , и проанализировать полученную целевую функцию. Если в целевой функции все коэффициенты , то опорный план оптимальный. Следовательно, оптимальное решение запишется в виде:

Если в целевой функции некоторые коэффициенты <0, то план не оптимален. Необходимо строить новый план. Для этого по симплекс-методу одну из свободных переменных (ту, у которой ) необходимо перевести в разряд базовых, а одну из базисных переменных перевести в разряд свободных и составить новый опорный план. Далее процедуру повторяют. Смену переменных выполняют следующим образом. В разряд базисных переводят ту свободную переменную, у которой больше абсолютное значение коэффициента. Затем в выше рассмотренном опорном плане проверяется, какая из базисных переменных при увеличении выбранной свободной переменной быстрее устремляется к нулю. Эту переменную переводят в разряд свободных.

Рассмотрим пример составления и решения линейной задачи симплекс-методом.

Пример 1. Пусть имеется следующая задача.

Цех выпускает валы и втулки. На производство 1 вала рабочий тратит 3 часа, а на производство 1 втулки - 2 часа. От реализации вала предприятие получает прибыль 800 руб., от реализации втулки - 600 руб. Цех должен выпустить не менее 100 валов и не менее 200 втулок. Сколько валов и втулок должен выпустить цех, чтобы получить наибольшую прибыль, если фонд рабочего времени составляет 900 человек - часов?

В качестве переменных (параметров) выбираем: - число валов, - число втулок. Затраты на выпуск 1 вала обозначим =3 час/вал, на выпуск 1 втулки - =2 час/втулка. Прибыль от реализации 1 вала =800 руб./вал, от реализации 1 втулки - =600 руб./втулка. Ресурсы рабочего времени =900 человек - часов. Условия по выпуску валов и втулок: , .

Таким образом, задача запишется в виде:

- множества параметров ;

- ограничения

- целевой функции .

Систему неравенств сведем к системе равенств:

где х3 – недоиспользованный фонд рабочего времени,

х4, х5 – дополнительно выпущенные соответственно, валы и втулки.

Итак, для задачи, рассмотренной выше, запишем:

- целевую функцию (критерий эффективности)

;

- ограничения (область определения)

где - неиспользуемый ресурс времени, - дополнительно выпускаемые валы, - дополнительно выпускаемые втулки.

В рассматриваемом примере число неизвестных n=5, число уравнений m=3.

Решение: 1.Переменные х4, х5 принимаем за свободные. В качестве базовых переменных, выраженных через свободные, возьмем х1, х2, х3. Составим опорный план:

Коэффициенты при х4, х5 отрицательные, следовательно, опорный план не оптимален. Переходим к построению нового опорного плана.

2. Из целевой функции видно, что в разряд базисных целесообразно перевести переменную х4, а х5 оставить свободной. Из числа базисных переменных в разряд свободных целесообразно перевести х3. Тогда новый опорный план будет иметь вид:

Из целевой функции видно, что коэффициент при х5 отрицательный, следовательно, план не оптимален. Переходим к составлению нового опорного плана.

3. Из разряда свободных переменных х5 переводим в базисные, а из базисных переменных х4 переводим в свободные. Составим опорный план вида:

Из целевой функции видно, что опорный план оптимальный. Следовательно, х1=100, х2=300, х3=0, х4=0, х5=100 и в соответствии с поставленной задачей необходимо выпустить 100 шт. валов и 400 шт. втулок. При этом будут использованы все ресурсы, а прибыль составит 260 тысяч рублей.

Пример 2. Решим задачу ранее рассмотренного примера 3 (раскрой материала).

По условию задачи имеем:

- вектор переменных х=(х1, х2, х3, х4);

- ограничение:

1+2х23=800,

х1+6х2+9х3+13х4=400;

- целевую функцию

q(x)=12х1+2х2+4х3.

Решение. Так как n=4, m=2, принимаем х3=0, х4=0.

Опорный план запишем в виде:

х1=250+0,87х3+1,62х4 ,

х2=25 - 1,64х3 - 2,43х4 ,

q(x)=3050+7,2х3+14,6х4 .

Решение найдено: число листов, раскроенных 1-м способом х1=250 шт, вторым способом х2=25 шт., третьим и четвёртым способом листы не раскраивались х3=0, х4=0.

При этом минимальные отходы q(х)=3050 м2.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1382 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2493 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.