Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


III. Методика измерений и расчетные формулы




ЛАБОРАТОРНАЯ РАБОТА № 1.10

«ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ ИЗГИБА»

I. Цель работы: изучение упругих деформаций различных материалов.

II. Описание установки.

Для выполнения работы используется установка ФМ-19, общий вид которой представлен на рис. 1. Основание снабжено регулируемыми опорами и узлом крепления вертикальной стойки, в верхней части которой закреплен кронштейн. Исследуемая пластина 1 помещается на призматические опоры 2, установленные на кронштейне. Там же установлен часовой индикатор 3 для измерения величины прогиба. При измерениях на середину пластины 1 кладется скоба нагружения 4 с наборным грузом 5.

В комплект установки также входят фотодатчик с узлом крепления к стойке и блок электронный ФМ-1/1 (на рис.1 не показаны).

 

III. Методика измерений и расчетные формулы.

Деформация — это изменение формы и/или размеров тела без изменения массы под действием внешней силы. Разные виды деформации сводятся к двум основным: сжатию-растяжению и сдвигу. При деформации образца в нем возникает сила упругости. Отношение силы упругости к площади поперечного сечения образца называется напряжением. При деформации сжатия- растяжения в образце возникает нормальное напряжение в направлении, перпендикулярном поперечному сечению. Деформация сдвига вызывается силами, направленными по касательной к сечению образца, при этом в образце возникает тангенциальное напряжение.

При малых деформациях справедлив закон Гука: напряжение прямо пропорционально относительной деформации. Коэффициентом пропорциональности для деформации сжатия-растяжения является модуль Юнга, который определяется ка напряжение, возникающее в образце при единичном относительном удлинении (т. е. при увеличении первоначальной длины вдвое).

Деформация изгиба представляет собой неоднородную деформацию сжатия-растяжения.

Прямой упругий стержень, свободно лежащий обоими концами на твердых опорах и нагруженный в середине грузом весом Р,претерпевает деформацию изгиба, как показано на рис. 2. При таком изгибе верхние слои стержня сжимаются, нижние растягиваются, а некоторый средний — нейтральный — слой сохраняет длину и только претерпевает искривление. Перемещение d, которое получает середина стержня, называется стрелой прогиба. Стрела прогиба зависит от величины нагрузки, от формы и размеров стержня, а также от упругих свойств стержня.

Найдем связь между стрелой прогиба и характеристиками упругого стержня. В данной работе используется пластина прямоугольного сечения размерами L (длина), h (высота), b (ширина). Под воздействием внешней силы пластина искривляется, и ее форма может быть описана функцией у (х)(см. рис.2).

Возникающие в пластине силы упругости пропорциональны кривизне пластины, т. е. второй производной у" (х). Условие равновесия имеет вид:

, (1)

где E — модуль Юнга, M (x) — изгибающий момент, коэффициент I зависит от формы и размеров пластины.

Величина изгибающего момента определяется по формуле:

.

Коэффициент I для прямоугольной пластины определяется по формуле:

.

Из условия равновесия изогнутой пластины с учетом выражения для изгибающего момента получаем дифференциальное уравнение для формы пластины:

.

После интегрирования имеем:

. (2)

Константа интегрирования C определяется из условия нулевого наклона пластины в середине:

.

После подстановки выражения для C в (2) и интегрирования получаем:

.

Стрела прогиба d равна смещению середины пластины:

.

Отсюда можно выразить модуль Юнга:

. (3)

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1044 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2282 - | 2063 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.