Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принцип интенсификации технологических процессов




Под интенсификацией технологического процесса понимают увеличение скорости его протекания вследствии чего увеличивается производительность в динициу времени.

Согласно общему кинетическому закону этого можно достичь увеличением потенциала процесса, увеличением кинетического коэффициента или одновременным увеличением этих двух факторов. В парктике пищевых производств используют отдельные или все эти способы интенсификации в зависимости от особенностей конструктивного процесса.

При использовании в качестве фактора интенсификации потенциала процесса необходимо иметь в виду, что поведение равновесной системы обусловливается не только значением потенциала, но и значением движущей силы – отдаленностью системы от состояния равновесия:

DХ = Хt - Хр

 

где DХ – движущая сила

Хt - текущий потенциал системы в момент времени t;

Хр – потенциал системы в состоянии равновесия

 

Исходя из этого уравнения, увеличить движущую силу можно 3 путями: увеличением текущего потенциала; снижением потенциала равновесия или одновременным изменением обоих потенциалов. На практике чаще используется способ, который заключается в максимально возможном увеличении начального потенциала (Хо) при t=0. Это достигается за счет увеличения градиентов переноса – градиента температуры, давления, концентрации, напряжения тока или другой переносимой субстанции.

Согласно молекулярно-кинетической теории взаимодействия повышения температцры в зоне реакции приводит к увеличению скорости движения молекул (ионов, атомов), из-за того, что увеличивается вероятность их столкновения и взаимодействия. Кроме того, повышение температуры увеличивает внутреннюю энергию взаимодействующих частиц, а это увеличивает количество эффективных контактов между ними.

Согласно правила Аррениуса-Вант-Гоффа повышение температуры в зоне реакции на 10 0С увеличивает скорость реакции в 2-4 раза. Таким образом, воздействие повышения температуры на скорость процесса носит комплексный характер. Оно влияет как на потенциал, так и на кинетический коэффициент. Проявлением последнего является увеличение коэффициентов диффузии, тепло- и массообмена и др.

Путем повышения температуры интенсифицируют процессы термической сушки, выпаривания, растворения, десорбции и др. для этого повышают температуру в рабочей зоне или предварительным нагревом продуктов, или подогревом рабочей зоны с помощью барботирования горячим паром, змеевиков или обогревательных кожухов. В случае обратных процессов – конденсации, кристаллизации, абсорбции, адсорбции, сублимации увеличения скорости процесса достигают снижением температуры в рабочей зоне. Это возможно путем предварительного охлаждения продукта или непосредственным охлаждением рабочей зоны аппарата.

Значительно большего эффекта можно достичь путем одновременного объединения воздействия температуры и давления. Чаще такое объединение используется при проведении процессов, часть или все компоненты которых находятся в газовой фазе. Следствием увеличения давления является повышение парциальных давлений газовых компонентов, что равнозначно увеличению их концентрации.

Для гомогенного процесса в газовой фазе скорость реакции прямо пропорциональна

 

 

??????????

 

 

§1.2. Роль отдельных пищевых веществ в жизнедеятельности организма и в пищевых технологиях

Качественный состав питания представляет содержание в рационе белков, жиров, углеводов, минеральных солей и витаминов. Все пищевые вещества по их преимущественному назначению можно разделить на 3 группы:

1) белки и минеральные соли: кальций и фосфор – с преимущественно пластической функцией;

2) жиры и углеводы – с преимущественно энергетической функцией;

3) витамины и минеральные соли (микро- и макроэлементы) – вещества, выполняющие в организме специфическую функцию катализаторов обменных процессов.

 

БЕЛКИ

Название белки или протеины происходит от греческого слова «protео» – первенствующий. Они представляют собой биополимеры, состоящие из остатков различных аминокислот, связанных между собой пептидной связью СО-NH.

 
 

Аминокислоты R-CH-COOH являются своеобразными кирпичиками, из которых

NH2

строится белковая молекула. Они состоят из двух активных группировок (карбоксильной и аминной). При взаимодействии двух аминокислот образуется дипептид, при взаимодействии трех аминокислот – трипептид, многих – полипептид.

 

Общая формула полипептида:

 

           
     
 

H2N-CH- CO-NH -CH- CO-NH -CH-CO…CH-COOH

 
 

R R1 R2 Rn

 

Между понятиями о пептидах и белках существует условное разделение: вещества с молекулярной массой до 5000 Да называют пептидами (или полипептидами), вещества с большей молекулярной массой – белками. Многие белки, кроме того, состоят из нескольких полипептидных цепей.

Белки – органические высокомолекулярные соединения, в состав большинства которых входят 5 элементов: Азот – 16,8-18,4%; Углерод – 51-53%; Водород – 6,9%; Кислород – 21-23%; Сера – 0,7-1,3%. Может входить фосфор – 1%

 

Чем ниже молекулярная масса, тем они лучше растворяются. Белки построены из 22 протеиногенных a-аминокислот, которые, как и белки являются оптически активными веществами и относятся к амфотерным соединениям в зависимости от того, в какую сторону они вращают плоскость поляризуемого света (+) (-).

Благодаря наличию кислотной и основной группы в белке они определяют буферные свойства белковых растворов, т.е. при добавлении соответствующей кислоты или щелочи поддерживают водород на заданном уровне.

Разнообразие белков определяется последовательностью размещения аминокислот в аминокислотной цепочке (первичная структура), она очень стабильна и держится благодаря пептидным и дисульфидным связям.

-СО-NH- обладает энергией 200 кДж/моль

-S-S- обладает энергией 260 кДж/моль

Вторичная структура – это упорядоченная структура полипептидной цепочки молекулярными и водородными связями, иными словами, закрученная в спираль полипептидная цепь (представьте спиралевидный электропровод, например, у телефона, бритвенного прибора). Вторичная структура представлена в основном: a-спиралью – характерной для большинства зерновых культур и складчатым слоем или b-структурой – для фибриллярных белков, содержащихся в волосах, рогах, копытах.

Водородная связь – это нековалентная связь, которая очень легко разрывается. Если для разрыва обычной химической связи необходимо затратить энергию от 200 до 450 кДж/моль, то для водородной требуется 4-30 кДж/моль.

Водородная связь возникает между атомом водорода (валентно связанным с каким-либо электроотрицательным атомом) и другим электроотрицательным атомом (кислородом или азотом)

-О-Н…О=

=N-H…Nº

O-H…Nº

=N-H…O=

Это биологически наиболее важные водородные связи.

Третичная структура – т.е. та конфигурация, которую принимает в пространстве скрученная в спираль полипептидная цепь (представьте электроспираль скрученную в клубок). Она характеризует внешнюю форму белковой молекулы.

Связи третичной структуры:

Водородная; ионная (или солевая); гидрофобное взаимодействие – это нековалентные связи и дисульфидные связи – это ковалентная связь.

Водородные связи в третичной структуре такие же, как и во вторичной.

Ионная или солевая связь – это электростатическое притяжение или отталкивание заряженных частичек. Эта связь легко разрушается при изменении рН среды и белок может легко изменять третичную структуру при изменении рН среды.

Гидрофобное взаимодействие – это слипание жирных углеводородных радикалов. Хвосты радикалов аминокислот содержат жирные остатки слипание которых приводит к определенным изгибам белковой молекулы. Способностью к гидрофобным взаимодействиям обладают: валин, лейцин, изолейцин, фенилаланин.

Важное значение для поддержания третичной структуры имеет взаимодействие углеводородных радикалов. Это можно понять так: в составе радикалов аминокислотных звеньев имеются полярные (например, карбоксильные, гидроксильные) и неполярные (углеводородные) группы атомов. В водной среде, где функционирует белок, полярные группы взаимодействуют с водой, а неполярные, «выталкиваются» ею. Вследствие этого макромолекула принимает третичную структуру в виде свернувшейся глобулы, у которой функциональные группы оказываютсмя снаружи, а углеводородные радикалы, отторгаемые водой, внутри глобулы. Взаимодействие последних между собой (силы Ван-дер-Ваальса) способствует поддержанию такой структуры.

Особое значение в структуре и свойствах белков придается дисульфидным связям, возникающим между полипептидными цепочками и сульфгидрильными группировками (SH) при действии сильного окислителя

-R-SH R-S

 
 

-R-SH + O R-S + H2O

 

От соотношения дисульфидных связей и сульфгидрильных группировок во многом зависит характер вторичной и третичной структуры белка, физические и технологические свойства продукта. Чем больше возникает дисульфидных связей и сульфгидрильных группировок, тем более плотнее будет белковая молекула, тем больше упругость и меньшая растяжимость клейковины в муке, а также выше сила муки.

При денатурации дисульфидная связь разрывается и полипептидная цепочка раскручивается.

Четвертичная структура – это соединения нескольких белковых молекул в одну макромолекулу с помощью нековалентных связей (водородной, солевой, гидрофобного взаимодействия).

Классическим примером белка с четвертичной структурой является молекула гемоглобина крови, состоящая из 4-х субъединиц: 2-е имеют a-структуру и 2-е b-структуру.

Четвертичной структурой обладают большинство ферментов, следовательно, четвертичная структура характеризует каталитическую активность ферментов.

Белки являются аморфными веществами и находятся в в 3-х состояниях: жидком (молоко), полужидком (куриное яйцо), твердом (волосы, рога, копыта, ногти).

Белки отличаются друг от друга не только по аминокислотному составу, но и по форме белковой молекулы: глобулярные (шаровидные) – это в основном белки растений и фибриллярные (нитевидные) – белки животного происхождения. При денатурации глобулярные белки могут переходить в фибриллярные.

 

Отрицательное влияние избытка белка в питании. Из-за большой реакционной способности организм переносит избыток белков труднее, чем других пищевых веществ, например жиров и углеводов. Особенно страдают от перегрузки белками печень и почки. Длительный избыток белка в питании вызывает перевозбуждение нервной системы, нарушение обмена витаминов, ожирение организма, заболевание суставов. Все это связано с повышенным поступлением вместе с белками нуклеиновых кислот, накоплением мочевой кислоты – продукта обмена пуринов, превращением избытка белков в жиры и т.д. Неусвоенный белок превращается в ядовитые вещества (птоамины или трупные яды). На утилизацию белков, на вынужденное их уничтожение уходит энергия организма, а это приводит к тому, что другие вещества (жиры, углеводы) уже исключаются из сгорания и откладываются в теле непереваренными. Это и ведет к излишнему весу и тучности, т.е. создает почву для сосудистых, сердечно-сосудистых и других заболеваний.

Среди белковых веществ могут находиться и крайне токсичные для человека соединения (токсин ботулизма и продукт распада белков, образующийся при гниении: индол и скатол).

Под переваримостью понимают ту часть белкового азота пищи, которая задерживается в человеческом организме и которая используется для белковых структур собственных органов и тканей.

Как правило, переваримость связана с доступностью пептидных связей молекул белка действию пищеварительных ферментов человеческого организма. Такая доступность напрямую связана с увеличением степени денатурации белковых молекул.

Полноценные и неполноценные белки. Белки, содержащие все незаменимые аминокислоты, называют полноценными, а белки, в составе которых отсутствует хотя бы одна незаменимая АК, называют неполноценными.

В зависимости от сложности белки делят на протеины – простые белки, состоящие только из аминокислотных остатков, соединенных между собой пептидной связью в одну или несколько полипептидные цепочки. Большинство растительных белков – простые.

Все простые белки в зависимости от растворителей делятся на:

1. альбумины – белки, растворимые в воде, обладают относительно невысокой молекулярной массой

2. глобулины – белки, растворимые в слабых солевых растворах

3. проламины – белки, растворимые в 60-80% этиловом спирте

4. глютелины – белки, растворимые в 0,2% растворе щелочи

 

Сложные белки - протеиды, состоящие из белка, соединенного с веществами небелковой природы, которая называется простетической группой.

В качестве простетической группы могут выступать нуклеиновые кислоты (нуклеопротеиды); красящие вещества (хомопротеиды); углеводы (гликопротеиды); липиды (липопротеиды); фосфор (фосфопротеиды) – казеин молока, вителин яичного желтка, ихтулин рыб.

Функции белков:

1. пластическая или структурная;

2. транспортная (гемоглобин);

3. энергетическая (при распаде белков);

4. передача наследственности (ДНК, РНК);

5. каталитическая (ферменты);

6. защитная (антитела);

7. регуляторная

 

 

       
   

 

Общий фонд аминокислот


 

Роли белка

 

Транспортные белки Гормоны Ферменты Гены Антитела Сократительные белки (работа мышц)

           
   
 
   
 
 


Рис. 1. Образование белков и их роль в организме

Антителами называются специфические (иммунные) вещества, вырабатывающиеся в тканях организма при воздействии на него антигенов (живые микробы и их токсины и т.д) и обладающие способностью вступать в реакцию с этими антигенами, уничтожая их вредное для организма действие





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 2645 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2479 - | 2175 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.