Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Комплексне число як вектор




 

Кожному к.ч. відповідає єдиний радіус-вектор , і навпаки, кожному радіусу-вектору відповідає єдине к.ч. (рис.1.1). Ми будемо зображати к.ч. відповідним йому радіус-вектором або довільним направленим відрізком, який при паралельному переносі збігається з . Зрозуміло, що модулі к.ч. і відповідного йому вектора рівні.

Якщо вектор зображає к.ч. , то домовимось писати .

Нехай Розглянемо паралелограм , див. рис.1.3.

 

Рис.1.3

Очевидно,

, тобто сума і різниця к.ч. відповідають сумі і різниці векторів. Таким чином, додавання і віднімання набуває простого геометричного змісту.

Множення і ділення к.ч.в геометричній формі розглядаються в §1.14.

Приклад. Доведемо нерівність , яка є узагальненням нерівності абсолютних величин дійсних чисел.

Використовуємо простий факт: сума довжин довільних двох сторін трикутника більша довжини третьої сторони. З рис. 1.3 випливає, що , тобто .

Випадок чисел, розміщених на одній прямій пропонуємо розглянути самостійно.

Приклад. Знайти суму і різницю і , де , . Переконатися за допомогою геометричної побудови, що ці вектори можна додавати і віднімати за правилом паралелограма.

Розв’язання.

.

Виконати самостійно

В умовах попереднього прикладу знайти і , де 1) , ;

2) , .

 

4.12. Кут нахилу вектора до осі

 

Розглянемо довільний ненульовий вектор (див. рис. 1.4). Величина кута j, утвореного обертанням осі в площині навколо точки до суміщення її з напрямком вектора , називається кутом нахилу цього вектора до осі ; при цьому j , якщо обертання здійснюється проти годинкової стрілки, і j при обертанні за годинковою стрілкою; якщо напрямок збігається з напрямком , то j .

Рис. 1.4

Таким чином, кут нахилу задає напрямок вектора. З рис.1.4. випливає, що додатний j+ і від’ємний j- кути визначають один і той же напрямок.

Очевидно також, якщо довільний кут j задає деякий напрямок, то такий же напрямок будуть задавати і кути , де . Отже, за кут нахилу вектора можна приймати будь-який з кутів , де ціле число.

Приклад. Легко перевірити, що кути 1350,4950,-2250,-9450 визначають один і той же напрямок (відносно осі ).

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 370 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2780 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.