Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Розклад даного вектора за напрямками на прямій, на площині і в просторі




Означення. Вектор (1) називається лінійною комбінацією векторів , де -деякі числові множники.

У виразі (1) вектор отримано в результаті лінійних операцій над векторами . Іноді говорять, що вектор лінійно виражається через вектори . Вираз (1) називають також розкладом вектора по системі векторів .

В необхідності розкладу вектора за даними напрямками можна переконатись на такому прикладі.

Дві опори (рис. 9) утримують вантаж під дією сили земного тяжіння . Необхідно знайти зусилля на кожну з опор.

 

Рис. 9

Для розв’язання задачі розкладемо вектор за правилом паралелограма на складові і , = + , які напрямлені вздовж опор. Величини зусиль можна знайти за допомого теореми синусів, розглядаючи паралелограм АВСО, в якому відома діагональ і кути і , які вона утворює зі сторонами ОВ і ОС.

Пропонуємо самостійно переконатись, що

Тепер перейдемо до лінійного вираження вектора за напрямками в більш загальній формі: на прямій, на площині в просторі.

1. Нехай дано два ненульові колініарні вектори , . Тоді існує число таке, що

Дійсно, можна знайти як відношення . Якщо вектори однаково напрямлені, , то число буде додатним, >0, і якщо , то <0.

2. Нехай на площині задані два неколініарні вектори , ½½ , і вектор , що належить цій же площині. Знайти розклад вектора за напрямками векторів (рис. 10).

Рис. 10

 

Побудуємо паралелограм ОВАС, діагональ якого вектор , а сторони ОВ і ОС розміщені на напрямках векторів . Тоді

Але , тоді за аналогією з (1) існує число таке, що . Так само .

Отже,

Коефіцієнти розкладу називаються координатами вектора в системі векторів .

3. Нехай в просторі задано три некомпланарні вектори зведені до спільної точки О і вектор . Тоді має місце розклад:

де - деякі числа, називаються координатами вектора в системі векторов (рис. 11).

Рис. 11

 

Для доведення (3) проведемо з точки А (кінець вектора ) пряму до перетину з площиною векторів в точці М. Далі, проведемо до перетину з напрямком в точці . ОМАD - паралелограм. Для вектора маємо

 

.

Вектор компланарний з , тому згідно (2) існують числа такі, що

Крім того, , тому за аналогією з (1) існує число таке, що . Остаточно отримуємо рівність (3).





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 438 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2255 - | 1995 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.