Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лекция: Моделирование многомерных нелинейных систем.




В лекции рассматриваются методы решения систем нелинейных уравнений.

В задачах проектирования и исследования поведения реальных объектов, процессов и систем (ОПС) математические модели должны отображать реальные физические нелинейные процессы. При этом эти процессы зависят, как правило, от многих переменных.

В результате математические модели реальных ОПС описываются системами нелинейных уравнений.

Решение систем нелинейных уравнений

Дана система нелинейных уравнений

(10.1)

или

Необходимо решить эту систему, т.е. найти вектор , удовлетворяющий систему (10.1) с точностью .

Вектор определяет точку в n-мерном Евклидовом пространстве, т.е. этому пространству и удовлетворяет всем уравнениям системы (10.1).

В отличие от систем линейных уравнений для систем нелинейных уравнений неизвестны прямые методы решения. При решении систем нелинейных уравнений используются итерационные методы. Эффективность всех итерационных методов зависит от выбора начального приближения (начальной точки), т.е. вектора .

Область, в которой начальное приближение сходится к искомому решению, называется областью сходимости G. Если начальное приближение лежит за пределами G, то решение системы получить не удается.

Выбор начальной точки во многом определяется интуицией и опытом специалиста.

Метод простых итераций

Для применения этого метода исходная система (10.1) должна быть преобразована к виду

(10.2)

или

Далее, выбрав начальное приближение и используя систему (10.2), строим итерационный процесс поиска по схеме:

т.е. на каждом k-ом шаге поиска вектор переменных находим, используя значения переменных, полученных на шаге (k-1).

Итерационный процесс поиска прекращается как только выполнится условие

(10.3)

При этом условие (10.3) должно выполняться одновременно по всем переменным.

Метод простых итераций используется для решения таких систем линейных уравнений, в которых выполняется условие сходимости итерационного процесса поиска, а именно:

(10.4)

т.е. сумма абсолютных величин частных производных всех преобразованных уравнений системы (10.2) по j-ой переменной меньше единицы.

На рисунке 10.1 представлена схема алгоритма решения систем нелинейных уравнений методом простых итераций.


Рис. 10.1. Схема алгоритма метода простых итераций

Рассмотрим пример.

Дана система нелинейных уравнений:

Необходимо определить область сходимости системы, выбрать начальную точку и найти одно из решений системы.

  1. Строим графики уравнений:


Рис. 10.2.

  1. Преобразуем систему для решения методом итераций

Проверяем условие сходимости (10.4). Для заданной системы оно имеет вид:

Находим:

В результате условие (10.4) будет иметь вид:

Определяем область сходимости G.

Граница области сходимости определится при решении системы,

Отсюда х1=0,5; .

В результате область сходимости определится при и

На графике уравнений строим область сходимости G:


Рис. 10.3.

Выбираем начальную точку , принадлежащую области сходимости G. Используя выбранную начальную точку решаем заданную систему нелинейных уравнений.





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 278 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2219 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.