Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Напряжение, ток и сопротивление




Пауль Хоровиц Уинфилд Хилл

Искусство схемотехники. Том 1 [Изд.4‑е]

 

 

Хоровиц Пауль, Хилл Уинфилд

«Искусство схемотехники»

Том 1

(Главы 1–6)

Издание 4‑е переработанное и дополненное

 

THE ART OF ELECTRONICS

Second Edition

Paul Horowitz   Harvard University

Winfield Hill   Rowland Institute for Science, Cambridge, Massachusetts

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester Melbourne Sydney

 

 

Предисловие

 

Кэрол, Джекобу, Мише и Джинджер

 

Перевод О.А. Соболевой

 

За последние сорок лет в области электроники, может быть более, чем в любой другой области техники, наблюдалось стремительное развитие. В 1980 г., преодолев сомнения, мы приняли смелое решение создать полный курс обучения искусству схемотехники. Под «искусством» мы понимаем мастерство владения предметом, которое возникает на основе богатого опыта работы с настоящими схемами и устройствами, но не может возникнуть в результате некоего отвлеченного подхода, принятого во многих учебниках по электронике. Само собой разумеется, если дело касается столь стремительно прогрессирующей области, наш практический подход таит в себе и опасность – столь же стремительно «свежие» сегодня знания могут устареть.

Электронная техника не сбавляет темп своего развития! Не успели просохнуть чернила на листах первого издания нашей книги, как нелепыми стали слова о «классическом» стираемом программируемом постоянном ЗУ, СППЗУ типа 2716 (2 Кб), стоимостью 25 долл. «Классика» исчезла бесследно, уступив место СППЗУ, емкость которых стала больше в 64 раза, а стоимость вдвое уменьшилась. Основная доля исправлений в этом издании обусловлена появлением новых улучшенных элементов и методов разработки – полностью переписаны главы, посвященные микрокомпьютерам и микропроцессорам (на основе IBM PC и 68008), в значительной мере переработаны главы, посвященные цифровой электронике (включая программируемые логические приборы (PLD) и новые логические семейства НС и АС), операционным усилителям и разработкам на их основе (что отражает факт появления превосходных операционных усилителей с полевым транзистором на входе) и приемам конструирования (включая САПР/АСУТП). Были пересмотрены все таблицы и некоторые из них претерпели существенные изменения, например, в табл. 4.1 (операционные усилители) уцелели лишь 65 % от 120 имевшихся в таблице входов, при этом добавились сведения по 135 новым ОУ.

Мы воспользовались появившейся в связи с новым изданием возможностью откликнуться на пожелания читателей и учесть свои собственные замечания по первому изданию. В результате была переписана заново глава, посвященная полевым транзисторам (она была чересчур сложной), и помещена в другое место ‑ перед главой по операционным усилителям (которые все в большей степени строятся на полевых транзисторах). Появилась новая глава по конструированию маломощных и микромощных схем (аналоговых и цифровых) – тема важная, но непопулярная в учебниках. Большая часть оставшихся глав существенно переработана. Появились новые таблицы, в том числе по аналого‑цифровым и цифро‑аналоговым преобразователям, цифровым логическим компонентам, маломощным устройствам, больше стало рисунков.

Теперь книга содержит 78 таблиц (они изданы также отдельной книгой, которая называется «Таблицы для выбора компонент Хоровица и Хилла») и более 1000 рисунков.

Перерабатывая текст, мы стремились сохранить неформальный подход, который обеспечил бы успех книге и как справочнику, и как учебнику. Трудности, с которыми сталкивается новичок, впервые взявшийся за электронику, всем известны: все вопросы сложно переплетаются друг с другом, и нет такого пути познания, пройдя по которому можно шаг за шагом преодолеть расстояние от неофита до компетентного специалиста. Вот почему в нашем учебнике появилось так много перекрестных ссылок, кроме того, мы расширили изданное отдельной книгой «Руководство по лабораторным работам» и теперь это – «Руководство для студента» («Руководство для студента к курсу «Искусство схемотехники», авторы Т. Хейес и П. Хоровиц), дополненное примерами конструирования схем, объяснениями, заданиями по тексту основного учебника, лабораторными упражнениями и ответами к задачам. Благодаря такому приложению, предназначенному для студентов, нам удалось сохранить краткость изложения и множество примеров, что и требовалось для тех читателей, которые пользуются книгой прежде всего как справочником.

Надеемся, что новое издание отвечает требованиям всех читателей ‑ как студентов, так и инженеров‑практиков. Ваши предложения и замечания направляйте непосредственно П. Хоровицу по адресу: Physics Department, Harvard University, Cambridge, MA 02138 (Кембридж, MA 02138, Гарвардский университет, физический факультет, П. Хоровицу).

Благодарим тех, кто помог нам в подготовке нового издания: М. Аронсона и Б. Матьюса (компания АОХ, Inc.), Дж. Грена (Кейптаунский университет), Дж. Авигада и Т. Хейеса (Гарвардский университет). П. Хоровица (компания EVI, Inc.), Д. Стерна и О. Уолкера. Выражаем признательность Дж. Мобли за отличное редактирование текста, С. Прибыльской и Д. Транхау из отдела прессы Кембриджского университета за высокий профессионализм и оказанную нам поддержку, а также неустанным наборщикам издательства Rosenlaui Publishing Services, Inc.

В заключение предлагаем вашему вниманию юридическую справку, отражающую современные нормы закона.

Пауль Хоровиц  

Уинфилд Хилл  

Март 1989 г.

 

 

Юридическая справка

В этой книге мы предприняли попытку научить читателя приемам конструирования электронных схем на основе примеров и данных, которые на наш взгляд являются точными. Однако примеры, данные и прочую информацию, предназначенную для обучения, не следует использовать в практических приложениях без самостоятельного тестирования и проверки. Тестирование и проверка особенно важны в тех случаях, когда неправильное функционирование может привести к несчастному случаю или повреждению имущества.

В связи с этим мы не даем никаких гарантий, прямых или косвенных, на предмет того, что примеры, данные и прочая информация в этой книге не содержат ошибок, отвечают требованиям промышленных стандартов или требованиям конкретных практических приложений. Авторы и издатель не несут ответственности за коммерческий исход и пригодность для какой‑либо практической цели, даже в том случае, если авторы дали совет по практическому использованию и описали пример практического использования в тексте. Авторы и издатель не несут также юридической ответственности за прямые или косвенные, преднамеренные или случайные повреждения, возникшие в результате использования примеров, данных и прочей информации из этой книги.

 

Предисловие к первому изданию

 

Перевод О.А. Соболевой  

 

 

Эта книга представляет собой учебник по разработке электронных схем и одновременно справочное пособие для инженеров, уровень изложения в ней постепенно повышается от простейшего, рассчитанного на новичков, к сложному, требующему глубоких знаний по электронике. Мы строго подошли к выбору круга рассматриваемых проблем и постарались просто и доходчиво изложить основные вопросы, с которыми сталкивается разработчик, стараясь совместить прагматический подход физика‑практика и точку зрения инженера, стремящегося к точности и обоснованности в разработке электронной схемы.

Основой для этой книги послужили конспекты курса электроники, которые читаются в Гарварде в течение одного семестра. Аудитория у этого курса довольно неоднородна – это специалисты, закончившие университет и повышающие квалификацию в соответствии со спецификой своей работы в промышленности, студенты‑выпускники, стремящиеся к научной работе, и соискатели ученой степени, которые неожиданно обнаружили свою неосведомленность в электронике.

Как показала практика, существующие учебники не подходят для такого курса. Очень хорошие книги написаны по отдельным разделам электроники, но все они предназначены для четырехгодичных курсов обучения или для инженеров, имеющих опыт практической работы; те учебники, в которых сделана попытка рассмотреть предмет электроники в целом, либо перегружены подробностями (и склоняются по стилю к уровню пособий), либо излагают материал очень поверхностно (и больше напоминают советы домохозяйке, чем рекомендации инженерам), либо собраны из неравномерно проработанных частей.

Большая часть материала, излагаемого в учебниках по основам электроники, на практике никогда не применяется и чаще всего для того, чтобы найти какую‑нибудь нужную схему или посмотреть, как проводить анализ ее работы, инженеру приходится отыскивать фирменные руководства по применению схем, просматривать технические журналы, доставать дефицитные справочники. Короче говоря, авторы учебников, как правило, излагают теорию и никак не учат искусству схемотехники или проектирования схем.

Мы поставили перед собой задачу написать такую книгу по электронике, которая была бы полезна и инженеру‑разработчику, и физику‑практику, и преподавателю электроники. Мы придерживаемся мнения, и это находит свое отражение в книге, что электроника – это искусство, которое основано на нескольких основных законах и включает в себя большое количество практических правил и приемов. По этой причине мы сочли возможным полностью опустить проблемы физики твердого тела, модель транзистора с использованием h ‑параметров, сложную для понимания теорию цепей и свели к минимуму рассмотрение нагрузочных характеристик и использование комплексной s ‑плоскости. Математических выкладок вы встретите очень мало, зато приводятся разнообразные примеры схем и всячески пропагандируется быстрая прикидочная оценка параметров и характеристик (которую желательно уметь производить «в уме»).

Помимо тех проблем, которые обычно рассматривают в учебниках по электронике, наша книга включает следующие вопросы: рассмотрение удобной для использования модели транзистора; построение таких практически полезных схем, как источники тока и токовые зеркала; разработки на базе операционного усилителя с одним источником питания; ряд практических вопросов, по которым часто трудно найти информацию (методы частотной коррекции операционных усилителей, схемы с низким уровнем шумов, схемы ФАПЧ и прецизионные линейные цепи); упрощенный метод разработки активных фильтров с использованием таблиц и графиков; проблемы шумов, экранирования и заземления; оригинальный графический метод анализа усилителя с низким уровнем шумов; источники эталонного напряжения и стабилизаторы напряжения, включая источники питания постоянного тока; мультивибраторы и их разновидности; недостатки цифровых логических схем и пути их устранения; сопряжение с логическими схемами, включая новые типы больших интегральных схем на n МОП‑ и p МОП‑структурах; методы аналого‑цифрового и цифро‑аналогового преобразования; генерация шумов в цифровых схемах; микропроцессоры и практические примеры их использования; конструирование, печатный монтаж, печатные платы, примеры готовых конструкций, упрощенные способы оценки быстродействия переключательных схем; измерение и обработка данных; описывается, что можно измерить и с какой точностью, как обработать данные; методы сужения полосы пропускания (усреднение сигналов, уплотнение каналов, использование усилителей с защелкой и весовых импульсов); представлена обширная коллекция негодных схем и удачных схем.

Некоторые полезные вопросы вынесены в приложения, из которых вы можете узнать, как чертить принципиальные схемы, какие существуют типы интегральных схем, как проектировать LC‑фильтры. В них приведены сопротивления некоторых типов резисторов, рассмотрены осциллографы, сюда же включены некоторые полезные математические выкладки. В книге приведены таблицы с характеристиками распространенных типов диодов, транзисторов, полевых транзисторов, операционных усилителей, компараторов, стабилизаторов, источников эталонных напряжений, микропроцессоров и других устройств.

Мы стремились к конкретности в изложении всех вопросов и поэтому очень часто при рассмотрении той или иной схемы сравнивали между собой характеристики элементов, которые можно использовать в схеме, обсуждали достоинства других вариантов построения схем. В приводимых примерах схем использованы настоящие элементы, а не «черные ящики».

Главная задача состояла в том, чтобы с помощью нашей книги читатель понял, как разрабатывается электронная схема, как выбирается ее конфигурация, типы элементов и их параметры. Отказ от математических выкладок вовсе не означает, что мы хотим научить читателя строить схемы «на глазок», не очень‑то заботясь об их характеристиках и надежности. Наоборот, излагаемый подход к разработке электронных схем максимально приближен к реальной жизни, он показывает, как принимаются решения при создании схем в инженерной практике.

Эту книгу можно использовать в качестве учебника для годичного курса по проектированию электронных схем, читаемого в колледжах. Требования к предварительному изучению математики невелики, однако читатель должен иметь представление о тригонометрических и экспоненциальных функциях и дифференциальном исчислении. (В приложение вынесен небольшой обзор по теории функций комплексного переменного и ее основным для электроники результатам.)

Если опустить некоторые разделы, то книгу можно использовать для курса, рассчитанного на один семестр (как в Гарварде).

Отдельно издано руководство к лабораторным работам – «Руководство к лабораторным работам по курсу «Искусство схемотехники» П. Хоровиц и Я. Робинсон, 1981 г.), которое содержит двадцать три лабораторных работы со ссылками на текст нашего учебника.

Для того чтобы облегчить чтение книги ускоренным методом, разделы, которые можно опустить при изучении материала, даны мелким шрифтом. Кроме того, если книга должна быть изучена в течение одного семестра, разумно пропустить первую половину гл. 5, а также гл. 7, 12–14 и, возможно, 15, это отмечено во вводных параграфах к перечисленным главам.

Нам бы хотелось поблагодарить наших коллег за ценные замечания и помощь, которую они оказали при подготовке рукописи, особенно М. Аронсона, Г. Берга, Д. Крауза, К. Девиса, Д. Грайсинджера, Дж. Хагена, Т. Хейеса, П. Хоровица, Б. Клайна, К. Папалиолиса, Дж. Сейджа и Б. Ваттерлинга. Мы выражаем признательность Э. Хайэбру, Дж. Мобли, Р. Джонсон и К. Вернеру из отдела прессы Кембриджского университета за работу, которую они выполнили с большим вкусом, на высоком профессиональном уровне.

Пауль Хоровиц  

Уинфилд Хилл  

Апрель 1980 г.

 

Глава 1

ОСНОВЫ ЭЛЕКТРОНИКИ

 

Ввведение

 

Перевод О. А. Соболевой  

 

 

Электроника имеет короткую, но богатую событиями историю. Первый ее период связан с простейшими передатчиками ключевого действия и способными воспринимать их сигналы приемниками, которые появились в начале нашего века. Затем наступила эпоха вакуумных ламп, которая ознаменовала собой возможность претворения в жизнь смелых идей.

Сейчас мы являемся свидетелями нового этапа развития электроники, связанного с появлением элементов на твердом теле и характеризующегося неиссякаемым потоком новых ошеломляющих достижений. Технология изготовления больших интегральных схем (БИС) дает возможность производить такие кристаллы кремния, на основе которых создают калькуляторы, вычислительные машины и даже «говорящие машины» со словарным запасом в несколько сотен слов. Развитие технологии сверхбольших интегральных схем открывает возможность создания еще более замечательных устройств.

Наверное, стоит сказать и о том, что в истории развития электроники наблюдается тенденция уменьшения стоимости устройств при увеличении объема их производства. Стоимость электронной микросхемы, например, постоянно уменьшается по отношению к единице ее первоначальной стоимости по мере совершенствования процесса производства (см. рис. 8.87). На самом деле зачастую панель управления и корпус прибора стоят дороже, чем его электронная часть.

Если вас заинтересовали успехи электроники и если у вас есть желание самостоятельно конструировать всевозможные хитроумные вещи, которые были бы надежны, недороги, просты и красивы, то эта книга – для вас. В ней мы попытались раскрыть предмет электроники, показать, как он интересен и в чем состоят его секреты.

Первую главу мы посвящаем изучению законов, практических правил и хитростей, составляющих в нашем понимании основу искусства электроники. Начинать всегда следует с самого начала, поэтому мы выясним, что такое напряжение, ток, мощность и из каких компонентов состоит электронная схема. На первых порах, пока вы не научитесь видеть, слышать, осязать и ощущать электричество, вам придется столкнуться с определенными абстрактными понятиями (их особенно много в гл. 1), а также увязать свои представления о них с показаниями таких визуальных приборов, как осциллографы и вольтметры. Первая глава содержит в себе много математики, больше, чем другие главы, несмотря на то, что мы старались свести математические выкладки к минимуму и хотели бы способствовать развитию интуитивного понимания построения и работы электронных схем.

Раз уж мы занялись основами электроники, нам следует прежде всего начать с так называемых активных схем (усилителей, генераторов, логических схем и т. п.), благодаря которым электроника и вызывает к себе такой интерес. Читатель, у которого уже есть некоторые знания по электронике, может эту главу пропустить.

Она предназначена для тех, кто прежде электроникой никогда не занимался.

Итак, приступим к делу.

 

Напряжение, ток и сопротивление

 

 

Напряжение и ток

 

Напряжение и ток – это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение U, иногда Е). Напряжение между двумя точками – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э.д. с).

Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103В), милливольтах (1 мВ = 10‑3 В) или микровольтах (1 мкВ = 10‑6 В) (см. разд. «Приставки для образования кратных и дольных единиц измерения», напечатанный мелким шрифтом). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6·1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10‑9 В) или в мегавольтах (1 мВ = 106 В), встречается редко; вы убедитесь в этом, прочитав всю книгу.

Ток ( условное обозначение I). Ток – это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10‑3 А), микроамперах (1 мкА = 10‑6 А), наноамперах (1 нА = 10‑9 А) и иногда в пикоамперах (1 пкА = 10‑12 А).

Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой‑нибудь элемент схемы.

Говорить «напряжение в резисторе» нельзя – это неграмотно. Однако часто говорят о напряжении в какой‑либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», т. е. такой точкой схемы, потенциал которой всем известен. Скоро вы привыкните к такому способу измерения напряжения.

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.

Здесь, пожалуй, может возникнуть вопрос, а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени. Мы будем прибегать к показаниям осциллографов, а также вольтметров для характеристики сигналов. Для начала советуем посмотреть приложение А, в котором идет речь об осциллографе, и разд. «Универсальные измерительные приборы», напечатанный мелким шрифтом.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в свое время мы обсудим этот вопрос.

Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять по‑разному.

Запомните несколько простых правил, касающихся тока и напряжения.

1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.

2. При параллельном соединении элементов (рис. 1.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В.

Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

 

 

Рис. 1.1.

 

3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

Р = U · I.

Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) x (заряд/время). Если напряжение U измерено в вольтах, а ток I – в амперах, то мощность Ρ будет выражена в ваттах. Мощность величиной 1 ватт – это работа в 1 джоуль, совершенная за 1 с (1 Вт = 1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений нам придется обобщить простое выражение Р = U · I для того, чтобы определять среднее значение мощности. В таком виде оно справедливо для определения мгновенного значения мощности.

Кстати, запомните, что не нужно называть ток силой тока – это неграмотно.

Нельзя также называть резистор сопротивлением. О резисторах речь пойдет в следующем разделе.

 

 

1.02. Взаимосвязь напряжения и тока: резисторы

 

Тема эта очень обширна и интересна. В ней заключена суть электроники. Если попытаться изложить ее в двух словах, то она посвящена тому, как можно сделать элемент, имеющий ту или иную характеристику, выраженную определенной зависимостью между током и напряжением, и как его использовать в схеме.

Примерами таких элементов служат резисторы (ток прямо пропорционален напряжению), конденсаторы (ток пропорционален скорости изменения напряжения), диоды (ток протекает только в одном направлении), термисторы (сопротивление зависит от температуры), тензорезисторы (сопротивление зависит от деформации) и т. д.

Постепенно мы познакомимся с некоторыми экзотическими представителями этой плеяды; а сейчас рассмотрим самый нехитрый и наиболее распространенный элемент – резистор (рис. 1.2).

 

 

Рис. 1.2.

* * *

 





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 321 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.