4. Модель «хищник-жертва»
Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.
1. 1. Сложные системы. Все биологические системы являются сложными многокомпонентными, пространственно структурированными, элементы которых обладают индивидуальностью. При моделировании таких систем возможно два подхода. Первый - агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций.
Другой подход ‑ подробное рассмотрение элементов системы и их взаимодействий, рассмотренное выше имитационное моделирование,. Имитационная модель не допускает аналитического исследования, но ее параметры имеют ясный физический и биологический смысл, при хорошей экспериментальной изученности фрагментов системы она может дать количественный прогноз ее поведения при различных внешних воздействиях.
2. 2. Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста (в нелимитированных условиях ‑ экспоненциального), возможность неустойчивости стационарного состояния в локальных системах (необходимое условие возникновения колебательных и квазистохастических режимов) и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах (условие неоднородных в пространстве распределений и автоволновых режимов).
Важную роль в развитии сложных пространственно-временных режимов играют процессы взаимодействия компонентов (биохимические реакции) и процессы переноса, как хаотического (диффузия), так и связанного с направлением внешних сил (гравитация, электромагнитные поля) или с адаптивными функциями живых организмов (например, движение цитоплазмы в клетках под действием микрофиламентов).
3. 3. Открытые системы, постоянно пропускающие через себя потоки вещества и энергии. Биологические системы далеки от термодинамического равновесия, и потому описываются нелинейными уравнениями. Линейные соотношения Онзагера, связывающие силы и потоки, справедливы только вблизи термодинамического равновесия.
4. 4. Биологические объекты имеют сложную многоуровневую систему регуляции. В биохимической кинетике это выражается в наличии в схемах петель обратной связи, как положительной, так и отрицательной. В уравнениях локальных взаимодействий обратные связи описываются нелинейными функциями, характер которых определяет возможность возникновения и свойства сложных кинетических режимов, в том числе колебательных и квазистохастических.
Такие нелинейности при учете пространственного распределения и процессов переноса обусловливают паттерны стационарных структур (пятна различной формы, периодические диссипативные структуры) и различные типы автоволнового поведения (движущиеся фронты, бегущие волны, ведущие центры, спиральные волны и др.)