По своему биологическому значению лихорадка – защитно-приспособительная реакция.
Виды лихорадок:
1.Субфебрильная – до 37-38 градусов.
2.Умеренная – 38-39 градусов.
3.Высокая – 39-40 градусов.
4.Очень высокая – 41 градус и выше (является опасной для жизни).
Степень повышения температуры при различных заболеваний зависит:
1.От реактивности организма.
2.От пирогенной активности микробов.
3.От функционального состояния центров терморегуляции и образования медиаторов.
Типы лихорадочных кривых.
1.Постоянная лихорадка (febriscontitua). Температура долго держится высокой. В течении суток разница между утренней и вечерней температуры не превышает 1 градуса.
2.Послабляющая (ремитипирующая) – febrisremittens. Температура высокая, суточные колебания температуры превышают 1-2 градуса, утренний минимум выше 37 градусов.
3.Перемежающаяся (интермиттирующая) febrisintermittens. Кратковременные повышения температуры до высоких цифр строго чередуются с периодами (1-2 дня) нормальной температуры.
4.Возвратная (febrisreccurens) колебания температуры в течении суток доходят до 3-5 градусов (утром норма, вечером 40 градусов).
Отличия лихорадки от перегревания.
При лихорадке происходит изменения в теплорегуляторном центр в сторону повышения температурного режима в организме, независимо от температуры окружающей среды.
При перегревании в организме происходит расстройство в работе теплорегуляторного центра (полом).
Классификация гипертермий в зависимости от источника образования избытка тепла:
1) гипертермия экзогенного происхождения (физическая),
2) эндогенная гипертермия (токсическая),
3) гипертермия, возникающая в результате перераздражения симпатоадреналовых структур, что ведет к спазму сосудов и резкому уменьшению отдачи тепла при нормальной теплопродукции (т.н. бледная гипертермия).
Экзогенная гипертермия возникает при длительном и значительном повышении температуры окружающей среды (при работе в горячих цехах, в жарких странах и т.п.), при большом поступлении тепла из окружающей среды (особенно в условиях высокой влажности, что затрудняет потоотделение) - тепловой удар. Это физическая гипертермия при нормальной терморегуляции.
Перегревание возможно и в результате прямого воздействия солнечных лучей на голову - солнечный удар. По клинической и морфологической картине тепловой и солнечный удары настолько близки, что их не стоит разделять. Перегревание тела сопровождается усиленным потоотделением со значительной потерей организмом воды и солей, что ведет к сгущению крови, увеличению ее вязкости, затруднению кровообращение и кислородному голоданию. Ведущими звеньями патогенеза теплового удара является расстройства водно - электролитного баланса из-за нарушения потоотделения и деятельности гипоталамического центра терморегуляции.
Тепловой удар нередко сопровождается развитием коллапса. Нарушениям кровообращения способствует токсическое действие на миокард избытка в крови калия, освобождающегося из эритроцитов. При тепловом ударе страдают также регуляция дыхания и функция почек, различные виды обмена.
В ЦНС при тепловом ударе отмечают гиперемию и отек оболочек и ткани мозга, множественные кровоизлияния. Как правило, наблюдается полнокровие внутренних органов, мелкоточечные кровоизлияния под плевру,в эпикард и перикард, в слизистую оболочку желудка, кишечника, нередко отек легких, дистрофические изменения в миокарде.
Тяжелая форма теплового удара развивается внезапно: изменения сознания от легкой степени до комы, судороги клонического и тонического характера, периодическое психомоторное возбуждение, часто бред, галлюцинации. Дыхание поверхностное, учащенное, неправильное. Пульс до 120- 140/мин малый, нитевидный, тоны сердца глухие. Кожа сухая, горячая или покрывается липким потом. Температура тела 41-42 градусов и выше. На ЭКГ признаки диффузного поражения миокарда. Наблюдается сгущение крови с нарастанием остаточного азота, мочевины и уменьшения хлоридов. Может быть гибель от паралича дыхания. Летальность до 20-30%.
Патогенетическая терапия - любое простое охлаждение - применение кондиционеров, в горячих цехах - различных щитов.
Эндогенная (токсическая) гипертермия возникает в результате резкого увеличения образования тепла в организме, когда он не в состоянии выделить этот избыток путем потоотделения и за счет других механизмов. Причиной является накопление в организме токсинов (дифтерийного, гноеродных микробов, в эксперименте - тироксина и a-динитрофенола), под влиянием которых выделяется большое количество макроэргических соединений (АДФ и АТФ), при распаде которых образуется и выделяется большое количества тепла
Значение лихорадки.
Лихорадка является преимущественно защитно-приспособительной реакцией организма. Повышается выработка антител, активируется фагоцитоз, угнетается размножение многих вирусов и бактерий, повышенное влияние медиаторов острой фазы на клеточный и гуморальный иммунитет, повышается дезинтоксикационная функция органов (в том числе печени), активируется стрессовая реакция – развивается общий адаптационный синдром.
Вопрос 19.
Опухоли, роль бластомогенных факторов клинического и физического характера, онкогенных вирусов. Биологические особенности доброкачественных и злокачественных новообразований. Отличия опухолевой клетки от нормальной
Опухоль (лат. tumor, греч. neoplasma) - это типовой патологический процесс, характеризующийся патологическим разрастанием ткани (клеток), их бесконтрольным делением с нарушением их способности к дифференцировке.
Причины. Канцерогены:химические (химикаты),биологические (вирусы), физические (излучения-ионизируюие, УФЛ).
Особенности опухоли: 1) атипия органоидного строения, 2) способность к бесконечному размножению, 3) утрата или уменьшение способности к дифференцировке, часто невозможно установить к какой ткани они принадлежат, 4) относительная автономия и независимость от регулирующего влияния организма. Клетки не могут организовать полноценные структуры и плохо взаимодействуют друг с другом, 5) опухоль способна к проникающему - инвазивному росту, 6) клетки способны метастазировать - распространяться от первичного очага, 7) есть еще ряд особенностей: а) антигенных свойств, в) обмена веществ, б) химического состава.
В развитий злокачественной опухоли выделяют последовательные стадий: инициация, промоция, прогрессия, метастазирование. В основе этого преобразования лежит мутация генома, а именно экспрессия онкогена мутагенами.
Влияние злокачественных опухолей на организм.
В основном, это две взаимосвязанные формы системного действия: а) конкуренция с тканями за жизненно важные метаболиты и трофические факторы, б) отрицательное влияние опухолей на биологические характеристики различных тканей, приводящее к нарушению их дифференцировки и ослаблению регулирующего влияния со стороны организма. Особенно существенны сдвиги в углеводном обмене. В злокачественных опухолях не обнаруживается глюкоза, она полностью утилизируется. Опухоли способны "насасывать" глюкозу из крови. Опухолевая ткань является своеобразной ловушкой азота, как алиментарного, так и освобождающегося при распаде белков и нуклеиновых кислот. Рост опухолей приводит к усиленной мобилизации липидов жировых депо и отсюда - гиперлипидемия. Часть липидов ассимилируется опухолью для образования мембран пролиферирующими опухолевыми клетками. В основном, мобилизацию липидов считают как компенсаторную реакцию на гипогликемическое влияние опухоли, позволяющую тканям при недостатке глюкозы использовать окисление жирных кислот, как дополнительный источник энергии. При опухолях отмечены нарушения биологических характеристик различных тканей. Накапливаются ненасыщенные жирные кислоты, которые являются эффективными разобщителями фосфорилирования, снижается уровень иммунореактивного инсулина в сыворотке крови, нарушается зависимость между продукцией гормонов передней доли гипофиза и гормонами других желез внутренней секреции, повышен порог чувствительности гипоталамо - гипофизарной системы, регулирующей уровень адреналостероидов.
Современные представления о двухстадийной модели канцерогенеза можно с уммировать следующим образом: 1) воздействия одного инициатора, фактора, которому принадлежит почин в новом деле, (первый шаг) или одного промотора (продвигать, активатор катализа) недостаточно для индукции опухоли, 2) действие инициатора и промотора не перекрываются во времени, 3) частота опухолей увеличивается только в том случае, если промотор действует после инициатора, а не наоборот, 4) интервал между воздействием инициатора и промотора не влияет на частоту опухолей, 5) частота опухолей зависит лишь от дозы инициатора.
В течение I фаза канцерогенеза (инициации) происходят необратимые нарушения генотипа нормальной клетки и она переходит в предрасположенное к трансформации состояние (латентная клетка). Канцероген или его активный метаболит взаимодействует с нуклеиновыми кислотами (ДНК и РНК) и белками клетки. Повреждения клетки могут иметь генетический и эпигенетический характер. Генетические повреждения выражаются: 1) генными мутациями (амплификация генов, реаранжировка, нарушение метилирования ДНК, активирование протоонкогенов) и 2) изменением числа хромосом.
II фаза канцерогенеза - промоция, в отличие от стадии инициации, обратима на раннем этапе процесса. В течение промоции инициированная в результате изменений генов клетка приобретает фенотипические свойства трансформированной клетки - (эпигенетический механизм). Однако для возникновения опухоли необходимо длительное и относительно непрерывное воздействие промоторов, оказывающих на клетки различное влияние: они влияют на клеточную дифференцировку и блокируют межклеточные связи, способствуют образованию свободных радикалов, индукции обмена сестринских хроматид, стимулируют экспрессию (силу проявления) ДНК-провирусов и некоторых ретровирусов, имеющих ревертазу (обратную транскриптазу, синтезирующую ДНК на матрице РНК, т.е. идет обратный поток информации от РНК к ДНК). Клинические наблюдения свидетельствуют, что канцерогенез у человека представляет собой многостадийный процесс, что рак развивается из единичной клетки, которая в процессе малигнизации проходит ряд стадий. Влияние экзогенных канцерогенных агентов модифицирует скорость, с которой клетка переходит из одной стадии в другую. Самыми существенными в отношении инициации канцерогенеза являются мутации в определенных кодонах локусов протоонкогенов, так как это может вызвать их функционирование в качестве онкогенов. Экспрессия онкогенов приводит к появлению онкобелков, специфично взаимодействующих с внутриклеточными мишенями. Это вызывает запуск каскада молекулярных процессов, приводящих к злокачественной трансформации клеток. Мишенями действия онкобелков могут быть с одной стороны, рецепторы клеточных мембран, эффекторы митогенных сигналов, а так же ядерные белки, регулирующие транскрипцию клеточной ДНК. С другой стороны, онкобелки сами могут имитировать митогенный сигнал, обеспечивая инициированной клетке автономное деление без участия факторов роста (ФР). Процесс превращения нормальной клетки в раковую многостадиен как на молекулярном уровне, так и на уровне фенотипа клетки. Этот процесс контролируется не одним, а целым каскадом онкогенов, действующих кооперативно. Очевидно, кооперация функций онкобелков и позволяет популяции трансформированных клеток противостоять защитным системам организма, что ведет к последующим росту и прогрессии новообразований. Автономность роста малигнизированных клеток от внеклеточных влияний ФР обусловлена постоянной экспрессией некоторых протоонкогенов или онкогенов. Продукт их экспрессии - онкобелки перенимают функцию внеклеточных факторов и сами по себе являются ФР, или рецепторами, передающими экстраклеточные регуляторные сигналы. Онкобелки контролируют или принимают участие в важных процессах жизнедеятельности клеток и организма в целом. Функции протоонкогенов настолько важны, что количественные или структурные аномалии в них приводят к серьезным последствиям в росте и дифференцировке стволовых клеток организма. Активация протоонкогенов и превращение их в онкогены может происходить различными путями, одним из них может быть гипометилирование ДНК (снижение уровня 5 - метилцитозина), что в норме происходит с возрастом. Таким образом, если "старая ДНК" уже гипометилирована, то для преодоления регуляторного порога могут потребоваться меньшие мутации, вызывающие гипометилирование. В настоящее время в качестве ведущего, центрального элемента трансформации наибольшее распространение получила концепция " аутокринной активации" пролиферации клеток. Возможный механизм туморогенного действия онкогенов заключается в том, что неадекватное появление онкобелка, при наличии рецептора на клеточной мембране или внутри клетки, приводит к аномальной стимуляции роста клеток собственным фактором роста. Следствием же аномальной пролиферации является трансформация клеток, которая при наличии других соответствующих с этим онкобелком факторов приводит к малигнизации. Канцерогенные агенты оказывают не только непосредственное воздействие на клетку, вызывая в ней стойкое изменение генотипа, но и опосредованное, создавая в организме условия, благоприятствующие ее выживанию. Еще до появления обнаруживаемой опухоли, в первые часы и дни после воздействия канцерогена в организме развиваются глубокие сдвиги, обеспечивающие энергетические и пластические потребности превращения инициированной клетки в злокачественную опухоль: это нарушения углеводного и жирового обмена, изменения биогенных аминов в гипоталамусе, сказывающиеся на гормональной регуляции пролиферации, изменения иммунитета.
Противоопухолевый иммунитет.
Зильбером и его учениками показано, что в опухолевой клетке имеется особый белок, обладающий: 1) специфическими антигенными свойствами и что 2) эти свойства отсутствуют в здоровых тканях. Считают, что в ответ на действие этих антигенов в процессе роста опухоли в организме могут возникать истинные антитела. Показано, что сама опухоль обладает иммунодепрессивным действием, резко тормозит иммуногенез, подавляет фагоцитоз, подавляет способность сыворотки растворять раковые клетки. Вот почему те воздействия, которые подавляют иммунитет - способствуют возникновению рака и наоборот. Развитие опухоли из инициированной, а затем трансформированной клетки происходит на фоне весьма интенсивного и жесткого контроля системы противоопухолевой защиты. В этой системе наряду с другими факторами важное место занимают иммунный надзор (специфический противоопухолевый эффект) и естественная резистентность. В реализации стадии промоции и прогрессии канцерогенеза большая роль принадлежит нейроэндокринной системе, осуществляющей регуляцию пролиферации опухолевых клеток и метаболическое обеспечение их роста. Однако еще в 60 годы высказывалось предположение, что иммунный надзор вряд ли является единственным механизмом защиты организма от потенциально злокачественных клеток. Большинство спонтанных опухолей не содержит строго специфических опухолевых антигенов. В настоящее время ведущее значение в иммунном распознавании и отторжении злокачественных клеток придают системе неспецифической противоопухолевой резистентности. Особенностями этой системы защиты организма от опухолей, в отличие от специфического противоопухолевого иммунитета, являются: 1) иммунный неспецифический характер распознавания опухолевых клеток, 2) готовность к немедленной реакции, не требующей предварительной иммунизации ("спонтанная" цитотоксичность), 3) способность к неспецифической активации, 4) отсутствие "иммунной" памяти. В реакцию системы естественной резистентности к опухолевым клеткам вовлекаются главным образом активированные макрофаги, естественные киллеры, естественные цитостатические клетки, нейтрофилы, естественные антитела, и ряд гуморальных факторов (в т.ч. фактор некроза опухоли, интерферон, интерлейкины, продуцируемые Т-лимфоцитами). Важно отметить, что при нормальном функционировании систем специфического и неспецифического противоопухолевого иммунитета вероятность выживания единичных трансформированных клеток invivo весьма невысока. Она повышается при некоторых врожденных иммунодефицитных заболеваниях, связанных с нарушением функции эффекторов естественной резистентности, воздействием иммунодепрессивных средств и при старении.
Вопрос 20.
Основные теории генеза опухолевого роста. Значение онкогенов, роль в канцерогенезе. Антибластомная резистентность организма – антиканцерогенные, антимутационные, антицелюлярные механизмы
Теория зарождения Р. Вирхова. Более 100 лет назад было выявлено, что опухоли возникают в тех местах, где ткани больше всего подлежат травматизации (прямая кишка, шейка матки). Это позволило Р. Вирхову сформулировать теорию, согласно которой постоянная травматизация тканей ускоряет процессы деления клеток, что может перейти в опухолевой рост.
Теория зародышевых зачатков Д. Конгейма. По теории Д. Конгейма на ранних стадиях развития зародыша в различных участках может возникнуть больше клеток, чем нужно для постройки соответствующей части тела. Некоторые клетки, оставшиеся невстроенными, могут образовывать дремлющие зачатки, обладающие высокой энергией роста. Эти зачатки находятся в латентном состоянии, но под влиянием определенных факторов могут расти, приобретая опухолевые свойства.
Регенерационно-мутационная теория Фишера-Вазельса. В результате действия различных факторов, в том числе химических канцерогенов в организме происходят дегенеративно-дистрофические процессы, сопровождается усилением регенерации. По мнению Фишера-Вазельса, регенерация – это «чувствительный» период в жизни клетки, когда может произойти опухолевая трансформация.
Вирусная теория. Вирусная теория возникновение опухолей была разработана Л.А. Зильбером. Вирус, внедряясь в клетку, действует на генном уровне, нарушая процессы регуляции деления клеток. В настоящее время чётко доказана роль вирусов (онковирусов) в развитии определенных опухолей.
Иммунологическая теория. Самая молодая теория возникновения опухолей. Согласно этой теории в организме постоянно происходят различные мутации, в том числе и опухолевая трансформация клеток. Нарушения в иммунной системе приводят к тому, что одна из трансформированных клеток не уничтожается и является причиной развития новообразования.
Современная полиэтиологическая теория происхождения опухолей.
1.Механические факторы: частая повторная травматизация тканей.
2.Химические канцерогены: местное и общее воздействие химических веществ.
3.Физические канцерогены: УФО, ионизирующее излучение (особенно рак кожи).
4.Онкогенные вирусы.
Особенность этой теории в том, что само воздействие внешних факторов не вызывает развития новообразования. Для возникновения опухоли необходимо наличие внутренних причин: генетической предрасположенности и определенного состояния иммунной и нейрогуморальной системы.
Онкоген – это ген, кодирующий белок, который в случае нарушения регуляции, может вызвать образование злокачественной опухоли.
Онкогены обусловливают превращение нормальных клеток эукариот на злокачественные при участии онкобелков, которые они кодируют. В организме существуют протоонкогены и антионкогены.
Известно около 30 онкогенов, которые кодируют белки. В злокачественном перерождении клеток принимает участие, как правило, два онкогена.
Считается, что гены-супрессоры опухолей (ГСО) предохраняют клетку от ракового перерождения. И таким образом, рак возникает либо в случае нарушения работы генов-супрессоров, либо при появлении онкогенов.
Многие клетки при появлении в них мутаций вступают в апоптоз, но в присутствии активного онкогена могут ошибочно выживать и делиться.
Роль онкобелков в канцерогенезе.
Продукты деятельности онкогенов-это онкобелки. Они могут синтезироваться в нормальных клетках, функционируя в них как регуляторы чувствительности их рецепторов к факторам роста. Многие онкобелки гомологичны или родственны к факторам: тромбоцитарному, эпидермальному, инсулиноподобному.
Механизмы действия онкогенов и их продуктов – онкобелков можно подразделить на три основные категории:
1.Онкобелки могут имитировать действие факторов роста, оказывать влияние на синтез их клетки.
2.Онкобелки могут модифицировать рецепторы факторов роста, имитируя ситуацию, характеризующую для взаимодействия рецептора с соответствующим факторам роста, без его действия.
Антибластомная резистентность. Зильбером и его учениками показано, что в опухолевой клетке имеется особый белок, обладающий: 1) специфическими антигенными свойствами и что 2) эти свойства отсутствуют в здоровых тканях. Считают, что в ответ на действие этих антигенов в процессе роста опухоли в организме могут возникать истинные антитела. Показано, что сама опухоль обладает иммунодепрессивным действием, резко тормозит иммуногенез, подавляет фагоцитоз, подавляет способность сыворотки растворять раковые клетки. Вот почему те воздействия, которые подавляют иммунитет - способствуют возникновению рака и наоборот. Развитие опухоли из инициированной, а затем трансформированной клетки происходит на фоне весьма интенсивного и жесткого контроля системы противоопухолевой защиты. В этой системе наряду с другими факторами важное место занимают иммунный надзор (специфический противоопухолевый эффект) и естественная резистентность. В реализации стадии промоции и прогрессии канцерогенеза большая роль принадлежит нейроэндокринной системе, осуществляющей регуляцию пролиферации опухолевых клеток и метаболическое обеспечение их роста. Однако еще в 60 годы высказывалось предположение, что иммунный надзор вряд ли является единственным механизмом защиты организма от потенциально злокачественных клеток. Большинство спонтанных опухолей не содержит строго специфических опухолевых антигенов. В настоящее время ведущее значение в иммунном распознавании и отторжении злокачественных клеток придают системе неспецифической противоопухолевой резистентности. Особенностями этой системы защиты организма от опухолей, в отличие от специфического противоопухолевого иммунитета, являются: 1) иммунный неспецифический характер распознавания опухолевых клеток, 2) готовность к немедленной реакции, не требующей предварительной иммунизации ("спонтанная" цитотоксичность), 3) способность к неспецифической активации, 4) отсутствие "иммунной" памяти. В реакцию системы естественной резистентности к опухолевым клеткам вовлекаются главным образом активированные макрофаги, естественные киллеры, естественные цитостатические клетки, нейтрофилы, естественные антитела, и ряд гуморальных факторов (в т.ч. фактор некроза опухоли, интерферон, интерлейкины, продуцируемые Т-лимфоцитами). Важно отметить, что при нормальном функционировании систем специфического и неспецифического противоопухолевого иммунитета вероятность выживания единичных трансформированных клеток invivo весьма невысока. Она повышается при некоторых врожденных иммунодефицитных заболеваниях, связанных с нарушением функции эффекторов естественной резистентности, воздействием иммунодепрессивных средств и при старении. Придается значение антибластомным элементам:
* Свойство организма.
*Препятствие проникновению канцерогенных агентов в клетку, её ядро.
*Обнаружение и устранение онкогенов или подавлять их экспрессию
*Обнаружение и разрушение опухолевых клеток, торможение их роста.
Антибластомной резистентностью называется устойчивость к опухолевому росту. Различают три группы:
1)Антиканцерогенные – действуют на этапе взаимодействия канцерогенного агента с клетками;
- инактивация химических канцерогенов в микросомальной системе; их элименации из организма - желчью, кала, мочи,
- ингибирование свободных радикальных процессов,
- взаимодействие с онкогенными вирусами интерферона, антител.
2)Антицеллюлярные – направленные на ингибирование и уничтожение отдельных опухолевых клеток. К ним относятся иммуногенные механизмы – неспецифические (реакция Ек) и специфические (реакция иммунных Т-киллеров, макрофагов).
3)Антимутационные – подавление экспрессии онкогена, обнаружение и устранение онкогена.
Вопрос 21.