При моделировании сложных реальных систем исследователь часто сталкивается с ситуациями, в которых случайные воздействия играют существенную роль. Стохастические модели, в отличие от детерминированных, учитывают вероятностный характер параметров моделируемого объекта. Например, в модели нефтеналивного порта не могут быть определены точно моменты прихода в порт танкеров. Данные моменты являются случайными величинами, потому модель эта является стохастической: значения переменных величин модели, которые зависят от реализаций случайных величин, сами становятся случайными величинами. Анализ подобных моделей выполняется на компьютере на основе статистики, набираемой в ходе имитационных экспериментов при многократном прогоне модели для различных значений исходных случайных величин, выбранных в соответствии с их статистическими характеристиками.
AnyLogic содержит средства для генерации случайных величин и статистической обработки результатов компьютерных экспериментов, средства автоматического накопления реализаций и определения выборочных характеристик исследуемых статистических процессов. AnyLogic включает генераторы случайных чисел для множества распределений. Разработчик модели может использовать также свой собственный генератор случайных величин, построенный в соответствии с данными наблюдений над реальной системой.
Аналитические
И имитационные модели
Использование абстракций при решении проблем с помощью моделей часто состоит в применении того или иного математического аппарата. Простейшими математическими моделями являются алгебраические соотношения, и анализ модели часто сводится к аналитическому решению этих уравнений. Некоторые динамические системы можно описать в замкнутой форме, например, в виде систем линейных дифференциальных и алгебраических уравнений и получить решение аналитически. Такое моделирование называется аналитическим. При аналитическом моделировании процессы функционирования исследуемой системы записываются в виде алгебраических, интегральных, дифференциальных уравнений и логических соотношений, и в некоторых случаях анализ этих соотношений можно выполнить с помощью аналитических преобразований. Современным средством поддержки аналитического моделирования являются электронные таблицы типа MS Excel.
Однако использование чисто аналитических методов при моделировании реальных систем сталкивается с серьезными трудностями: классические математические модели, допускающие аналитическое решение, в большинстве случаев к реальным задачам неприменимы. Например, в модели нефтеналивного порта построить аналитическую формулу для оценки коэффициента использования оборудования невозможно хотя бы потому, что в системе существуют стохастические процессы, есть приоритеты обработки заявок на использование ресурсов, внутренний параллелизм в обрабатывающих подсистемах, прерывания работы и т. п. Даже если аналитические модели удается построить, для реальных систем они часто являются существенно нелинейными, и чисто математические соотношения в них обычно дополняются логико-семантическими операциями, а для них аналитического решения не существует. Поэтому при анализе систем часто стоит выбор между моделью, которая является реалистическим аналогом реальной ситуации, но не разрешимой аналитически, и более простой, но неадекватной моделью, математический анализ которой возможен.
При имитационном моделировании структура моделируемой системы — ее подсистемы и связи — непосредственно представлена структурой модели, а процесс функционирования подсистем, выраженный в виде правил и уравнений, связывающих переменные, имитируется на компьютере. AnyLogic — это среда имитационного моделирования. Разнообразные средства спецификации и анализа результатов, имеющиеся в AnyLogic, позволяют строить модели, имитирующие работу моделируемой системы фактически с любой желаемой степенью адекватности, и выполнять анализ модели на компьютере без проведения аналитических преобразований.
Подробно об имитационном моделировании, составляющем предмет данной книги, мы поговорим в следующей главе.
Глава 3