Реальные физические объекты функционируют в непрерывном времени, и для изучения многих проблем физических систем их модели должны быть непрерывными. Состояние таких моделей изменяется непрерывно во времени. Это модели движения в реальных координатах, модели химического производства и т. п. Процессы движения объектов и процессы перекачки нефти в модели нефтеналивного порта являются непрерывными.
На более высоком уровне абстракции для многих систем адекватными являются модели, в которых переходы системы из одного состояния в другое можно считать мгновенными, происходящими в дискретные моменты времени. Такие системы называются дискретными. Примером мгновенного перехода является изменение числа клиентов банка или количества покупателей в магазине. Очевидно, что дискретные системы — это абстракция, процессы в природе не происходят мгновенно. В реальный магазин реальный покупатель входит в течение некоторого времени, он может застрять в дверях, колеблясь, войти или нет, и всегда существует непрерывная последовательность его положения во время прохождения дверей магазина. Однако при построении модели магазина для оценки, например, средней длины очереди в кассу при заданном потоке покупателей и известных характеристиках обслуживания кассиром клиентов можно абстрагироваться от этих второстепенных явлений и считать систему дискретной: результаты анализа полученной дискретной модели обычно достаточно точны для принятия обоснованных управленческих решений для подобных систем. В модели нефтеналивного порта мгновенными можно считать, например, переходы светофоров на входе в гавань из состояния "запрещено" в состояние "разрешено".
На еще более высоком уровне абстракции при анализе систем также используются непрерывные модели, что характерно для системной динамики. Потоки машин на автострадах, потребительский спрос, распространение инфекции среди населения часто удобно описывать с помощью взаимозависимостей непрерывных переменных, описывающих количества, интенсивности изменения этих количеств, степени влияния одних количеств на другие. Соотношения таких переменных выражаются обычно дифференциальными •равнениями.
Во многих случаях в реальных системах присутствуют оба типа процессов, и если оба они являются существенными для анализа системы, то и в модели одни процессы должны представляться как непрерывные, другие — как дискретные. Такие модели со смешанным типом процессов называются гибридными. Например, если при анализе функционирования магазина существенным является не только количество покупателей, но и пространственное их положение и перемещение покупателей, то модель в этом случае должна представлять смесь непрерывных и дискретных процессов, т. е. это гибридная модель. Другим примером может служить модель функционирования крупного банка. Поток инвестиций, получение и выдача кредитов в нормальном режиме описывается набором дифференциальных и алгебраических уравнений, т. е. модель является непрерывной. Однако существуют ситуации, например дефолт (дискретное событие), в результате чего возникает паника у населения, и с этого момента система описывается совершенно другой непрерывной моделью. Модель данного процесса на том уровне абстракции, на котором мы хотим адекватно описать оба режима работы банка и переход между режимами, должна включать как описание непрерывных процессов, так и дискретные события, а также их взаимозависимости.
Пакет AnyLogic поддерживает описание как непрерывных, так и дискретных процессов. Что более важно, в среде AnyLogic можно строить и их нетривиальные композиции, т. е. гибридные модели, причем самым естественным образом. AnyLogic позволяет реализовать модель, фактически, на любом уровне абстракции (детальности). Выполнение гибридных моделей в AnyLogic основано на современных результатах теории гибридных динамических систем.