Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


I. Проверка домашнего задания учащихся.




1. Один учащийся на доске готовит доказательство теоремы о свойстве углов при основании равнобедренного треугольника.

2. Второй учащийся решает на доске домашнюю задачу № 117 (по рис. 67).

3. Устно по готовым чертежам на доске (см. рис. 1–3) решаем задачи, предварительно повторив материал в ходе ответов учащихся на контрольные вопросы 10–12 на с. 50.

Найдите DВА.

 

Рис. 1                                 Рис. 2                                    Рис. 3

II. Изучение нового материала.

1. Сформулировать и записать признак равнобедренного треугольника (обратная теорема свойства углов равнобедренного треугольника):

Если в треугольнике два угла равны, то он равнобедренный.

2. Решить задачу № 111 (по рис. 65) устно по заранее заготовленному чертежу на доске.

3. Изучить теорему о биссектрисе равнобедренного треугольника, проведенной к основанию (рис. 64):

1) перед изучением теоремы повторить первый признак равенства треугольников; повторить определение биссектрисы, медианы и высоты треугольника; определение и свойство смежных углов треугольника;

2) учить учащихся при формулировке теоремы выделять, что дано, что надо доказать; учить краткой записи доказательства теоремы.

4. Объяснение учителя. Мы установили, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также утверждения:

1) Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

2) Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

5. Устно решить задачу № 110.

III. Решение задач на закрепление изученного материала.

1. Решение задач (устно) по готовым чертежам (заранее изготовить плакаты с рисунками, см. рис. 1–5).

Найдите DВА (учить учащихся читать чертеж по обозначениям на нем).

 

Рис. 1                                    Рис. 2                                 Рис. 3

             

Рис. 4                                                      Рис. 5

2. Решить задачу № 119 с записью решения на доске и в тетрадях.

Дано: DЕК – равнобедренный;          EF – биссектриса;          DK = 16 см, DЕF = 43°. Найти: KF, DЕK, ЕFD.

Решение

1) По условию ЕF – биссектриса D DЕK и DЕF = 43°, тогда

DЕK = 2 · DЕF = 43° · 2 = 86°.

2) EF – медиана равнобедренного DЕK (по свойству биссектрисы, проведенной к основанию), тогда KF = DK; KF = 16: 2 = 8 (см).

3) ЕF – высота равнобедренного DЕK (свойство биссектрисы, проведенной к основанию равнобедренного треугольника).

Значит, ЕFD = ЕFK = 90°.

Ответ: KF = 8 см; DЕK = 86°; ЕFD = 90°.

3. Решить задачу № 120 (а) с записью решения на доске и в тетрадях.

IV. Итоги урока.

Домашнее задание: повторить п. 15; изучить пункты 16–18, ответить на вопросы 4–13 на с. 50; решить задачи №№ 114, 118 и 120 (б).

Урок 14
ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ

Цели: повторить и закрепить изученный ранее материал; изучить второй признак равенства треугольников и выработать навыки использования первого и второго признаков равенства треугольников при решении задач; развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

1. Ответы на контрольные вопросы 4 –13 на с. 50.

2. Решение задач по готовым чертежам с целью повторения первого признака равенства треугольников:

1) На рисунке 1 DЕ = DK, 1 = 2. Найдите ЕС, DСK и DKС, если KС = 1,8 дм; DСЕ = 45°, DЕС = 115°.

2) На рисунке 2 ОВ = ОС, АО = DО; АСВ = 42°, DСF = 68°.

Найдите АВС.

      

Рис. 1                                           Рис. 2





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 645 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2305 - | 2097 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.121 с.