Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основная теорема арифметики




Важнейшим вопросом, связанным с простыми числами, является вопрос о возможности разложения любого числа на простые множители.

Условились считать два разложения на множители одинаковыми, если они отличаются друг от друга лишь порядком множителей. Например, одинаковы разложения 2 · 2 · 3 · 5 и 3 · 2 · 5 · 2. Тогда справедлива следующая теорема, которую называют основной теоремой арифметики натуральных чисел.

Теорема. Всякое натуральное число, большее единицы, можно единственным образом представить в виде произведения простых множителей.

Основной эта теорема называется потому, что практически все свойства делимости чисел являются ее следствиями.

Теорема содержит два утверждения:

1) разложение на простые множители существует,

2) разложение на простые множители единственно.

Предварительно сделаем замечание. Возникает вопрос: в каком смысле сформулированная теорема верна для простого числа р?

Условимся считать, что простое число представимо в виде произведения так: р = р, т.е. число простых множителей в правой части равно одному.

1) Докажем сначала возможность представления натурального числа большего единицы в виде произведения простых чисел.

Пусть п > 1– какое-нибудь натуральное число. Оно имеет по крайней мере один простой делитель р 1, п = р 1· п 1, при этом п 1 = 1 или п 1 > 1. Если п 1 = 1, то п = р 1 и теорема доказана. Если число п 1 > 1, то оно имеет хотя бы один простой делитель р 2, т.е. n 1 = p 2 × n 2, n = p 1 · p 2 · n 2. При этом п 2 = 1 или п 2 > 1. Если п 2 = 1, то n 1 = р 2 и n=p 1 × p 2 и теорема доказана. Если п 2 > 1, то п 2 имеет по крайней мере один простой делитель р 3, п 2 = p3 × n3, п = p 1 × p 2 ×  p 3 × n 3, если п 3 = 1, то n = p 1· p 2· p 3 и теорема доказана. Если п 3 > 1, то рассуждаем аналогичным образом дальше.

Заметим, что числа n 1, n 2, n 3, … уменьшаются: n 1 > n 2 > n 3 > …. Но множество натуральных чисел, меньших определённого числа n, конечно. Поэтому проводимый нами процесс после конечного числа шагов должен прекратиться, что может наступить лишь при условии, что какое-либо число       nк = 1. Но тогда n = p 1 · p 2 · · pк, где p 1, p 2, …, pк – простые числа.

Этим и доказывается возможность представления любого натурального числа большего 1 в виде произведения простых чисел.

Процесс разложения натурального числа на простые множители, применённый при доказательстве, хорошо известен со школы и схематически изображается так

168 2  
84 2  
42 2  
21 3  
7 7  
1    

Для осуществления этого разложения испытывают, последовательно, делится ли n на простые числа 2, 3, 5, 7.

2) Доказательство единственности (от противного).

Допустим, что натуральное число n > 1 можно представить в виде произведения простых чисел не единственным образом: n = p 1· p 2· · pк и n = q 1 · q 2 · · qm, где простые числа pi могут отличаться от qi, и, может быть, кm.

По симметричности и транзитивности отношения равенства имеем p 1· p 2 · · pк = q 1· q 2 · · qm (*). Правая часть имеет множителем q 1, значит произведение в левой части делится на q 1, но тогда по теореме 5 (§ 9) один из множителей делится на q 1. Меняя в случае надобности места множителей, можем считать, что p 1 q 1, но p 1и q 1 – простые числа, значит по теореме 6 (§ 3) p 1 = q 1. Разделим обе части равенства (*) на р 1, получим:

p 2 · p 3 ·  … · pк = q 2 · q 3 · … · qm.

Аналогично устанавливаем, что один из множителей q 2, q 3,  …, qm равен р 2. Пусть q 2 = р 2, тогда p 3 · p 4 ·  … · pк = q 3 · q 4 ·  … · qm. Повторяя рассуждения, придем:

1) при к = т к тому, что при сокращении всех множителей в левой части равенства (*) сократятся все множители в правой части равенства (*) и в этом случае два представления числа n, указанные при допущении, могут отличаться только порядком следования множителей;

2) при к < т к невозможному равенству 1 = qk +1 · qk +2 · … · qm, т.к. произведение простых чисел не может быть равно единице;

3)при к > т придем к невозможному равенству pm +1 · pm +2 · … · pk = 1.

Следовательно, утверждение о единственности представления натурального числа п > 1 в виде произведения простых чисел доказано.

Если среди множителей p 1, p 2, …, pк встречаются одинаковые, то, пользуясь записью произведения равных множителей как степени, можем написать: , где каждый из показателей – натуральное число, а все множители p 1, p 2, …, pк различные простые числа.

Такое представление натурального числа п > 1 называют каноническим разложением числа n на простые множители. Например, 360 = 23 · 32 · 5.





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 487 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2668 - | 2233 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.