Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгоритм построения проекций отрезка прямой линии




Словесная форма Графическая форма
1. Отложить значения координат для точек А и В на осях x, y, z. Получаем вспомогательные точки: Ax, Bx на оси OX; Aу, By на оси OY; Az Bz на оси OZ. При построении этих точек необходимо учитывать знаки координат и откладывать их на осях в соответствующем направлении
2. Построить проекции точек А и В: А1(x; y), В1(x; y); А2(x; z), В2 (x;z). 3. Соединить соответствующие проекции точек А1 с В1, А2 с В2. Получаем проекции отрезка АВ: [А1В1] и [А2В2]. [А1В1] – это проекция отрезка прямой линии на П1. [А2В2] – это проекция отрезка прямой линии на П2
4. Отложить значение координаты Y на оси OY профильной плоскости: Ay By, где A3(y; z), B3 (y; z)

4.2. Положение прямой линии относительно
плоскостей проекций

По положению прямой линии относительно плоскостей проекций различают прямые общего положения и частного положения (рис. 4.1).

Рис. 4.1. Классификация прямых линий

 

Прямая линия общего положения не параллельная ни одной из плоскостей проекций. В системе плоскостей проекций П1П2П3 прямая АВ будет иметь следующие проекции: [А1В1] на П1, [А2В2] на П2, и [А3В3] на П3 (рис. 4.2).

 

а

б

Рис. 4.2. Прямая линия общего положения: а – наглядное изображение; б – комплексный чертёж

Прямая линия частного положения – прямая, параллельная либо перпендикулярная одной из плоскостей проекций.

Прямая линия уровня – прямая, параллельная одной из плоскостей проекций: горизонтали, фронтали, профильной прямой.

Горизонталь h – прямая линия, параллельная горизонтальной плоскости проекций П1 (рис. 4.3).

Свойства проекций горизонтали.

1. Проекция прямой линии h1(A1B1) равна самому отрезку, [A1B1]=|AB|.

2. Фронтальная и профильная проекции параллельны осям проекций, h22В2]II Ox, [A3B3]IIOY.

3. Угол наклона β к плоскости П2 проецируется в натуральную величину на плоскость П1.

4. На комплексном чертеже определяется двумя проекциями h1, h2.

 

а

б

  Рис. 4.3. Горизонталь h: а – наглядное изображение; б – комплексный чертёж

Фронталь f – прямая линия, параллельная фронтальной плоскости проекций П2 (рис. 4.4).

Свойства проекций фронтали.

1. Проекция фронтали f2(A2B2) равна самому отрезку, [A2B2]=|AB|.

2. Горизонтальная и профильная проекции параллельны осям проекций: [А1В1]II Ox,[A3B3]IIOZ.

3. Угол наклона a к плоскости П1 проецируется в натуральную величину на плоскость П2.

4. На комплексном чертеже определяется двумя проекциями f1, f2.

 

а

б

  Рис. 4.4. Фронталь f: а – наглядное изображение; б – комплексный чертёж

Профильная прямая р – это прямая линия, параллельная профильной плоскости проекций П3 (рис. 4.5).

Свойства проекций профильной прямой.

1. Проекция профильной прямой p3(A3B3) равна самому отрезку, [A3B3]=|AB|.

2. Горизонтальная и фронтальная проекции параллельны осям проекций: [А1В1]II y, [A2B2]IIOZ.

3. Углы наклона a и β проецируются в натуральную величину на плоскость П3.

4. На комплексном чертеже определяется двумя проекциями p2, p3.

 

а

б

  Рис. 4.5. Профильная прямая p: а – наглядное изображение; б – комплексный чертёж

Проецирующая прямая линия – это прямая, перпендикулярная плоскости проекций.

Горизонтально проецирующая прямая – прямая, перпендикулярная горизонтальной плоскости проекций П1 (рис. 4.6).

 

а

б

  Рис. 4.6. Горизонтально проецирующая прямая: а – наглядное изображение; б – комплексный чертёж

 

Свойства проекций горизонтально проецирующей прямой.

1. Проекция прямой линии m2(A1B1) вырождается в точку, А11.

2. Проекция m22В2) параллельна линиям связи.

3. Горизонтально проецирующая прямая параллельна одновременно П2 и П3, следовательно, [А2В2] = [А3В3] = |АВ|.

Фронтально проецирующая прямая – прямая линия, перпендикулярная фронтальной плоскости проекций П2 (рис. 4.7).

 

а

б

  Рис. 4.7. Фронтально проецирующая прямая: а – наглядное изображение; б – комплексный чертёж

 

Свойства проекций фронтально проецирующей прямой.

1. Проекция прямой линии i22D2) вырождается в точку, C2=D2.

2. Проекция i11D1) и проекция i33D3) параллельны линиям связи.

3. Фронтально проецирующая прямая параллельна одновременно П1 и П3, следовательно, [C1D1] = [C3D3] = |CD|.

Профильно проецирующая прямая – прямая, перпендикулярная профильной плоскости проекций П3 (рис. 4.8).

 

а

б

  Рис. 4.8. Профильно проецирующая прямая: а – наглядное изображение; б – комплексный чертёж

Свойства проекций профильно проецирующей прямой.

1. Проекция прямой линии k3(M3N3) вырождается в точку, M3=N3.

2. Горизонтальная k1(M1N1) и фронтальная k2(M2N2) проекции перпендикулярны линиям связи.

3. Профильно проецирующая прямая параллельна одновременно П1 и П2, следовательно, [M2N2] = [M1N1] = |MN|.

 





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 996 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2260 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.