Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимное положение точек в пространстве




Рассмотрим три варианта взаимного расположения точек в зависимости от соотношения координат, определяющих их положение в пространстве.

1. На рис. 3.4 точки A и B имеют различные координаты.

 

а

б

Рис. 3.4. Варианты взаимного расположения точек: а – наглядное изображение; б – комплексный чертёж

 

Их взаимное расположение можно оценить по удаленности к плоскостям проекций: YА>YВ, тогда точка A расположена дальше от плоскости П2 и ближе к наблюдателю, чем точка B; ZА>ZВ, тогда точка A расположена дальше от плоскости П1 и ближе к наблюдателю, чем точка B; XА<XВ, тогда точка B расположена дальше от плоскости П3 и ближе к наблюдателю, чем (при взгляде слева) точка А.

2. На рис. 3.5 представлены точки A, B, С, D, у которых одна из координат совпадает, а две другие отличаются.

 

а

б

  Рис. 3.5. Конкурирующие точки: а – наглядное изображение; б – комплексный чертёж

Их взаимное расположение можно оценить по удалённости к плоскостям проекций следующим образом:

YА=YВ=YD, то точки А, В и D равноудалены от плоскости П2, и их горизонтальные и профильные проекции расположены соответственно на прямых [А1В1]llОХ и [А3В3]llOZ. Геометрическим местом таких точек служит плоскость, параллельная П2;

ZА=ZВ=ZС, то точки А, В и С равноудалены от плоскости П1, и их фронтальные и профильные проекции расположены соответственно на прямых [А2В2]llОХ и [А3С3]llOY. Геометрическим местом таких точек служит плоскость, параллельная П1;

XА=XC=XD, то точки А, C и D равноудалены от плоскости П3 и их горизонтальные и фронтальные проекции расположены соответственно на прямых [А1C1]llOY и [А2D2]llOZ. Геометрическим местом таких точек служит плоскость, параллельная П3.

3. Если у точек равны две одноименные координаты, то они называются конкурирующими. Конкурирующие точки расположены на одной проецирующей прямой. На рис. 3.3 даны три пары таких точек, у которых: XА=XD; YА=YD; ZD > ZА; XA=XC; ZA=ZC; YC > YA; YA=YB; ZA=ZB; XB > XA.

Различают горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD, фронтально конкурирующие точки A и C, расположенные на фронтально проецирующей прямой AC, профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

Выводы по теме

1. Точка – линейный геометрический образ, одно из основных понятий начертательной геометрии. Положение точки в пространстве можно определить её координатами. Каждая из трёх проекций точки характеризуется двумя координатами, их название соответствует названиям осей, которые образуют соответствующую плоскость проекций: горизонтальная – A1(XA; YA); фронтальная – A2(XA; ZA); профильная – A3(YA; ZA). Трансляция координат между проекциями осуществляется с помощью линий связи. По двум проекциям можно построить проекции точки либо с помощью координат, либо графически.

3. Точка по отношению к плоскостям проекций может занимать в пространстве как общее, так и частное положение.

4. Точка общего положения – точка, не принадлежащая ни одной
из плоскостей проекций, т. е. лежащая в пространстве между плоскостями проекций. Координаты точки общего положения не равны нулю (x≠0,y≠0,z≠0).

5. Точка частного положения – это точка, принадлежащая одной или двум плоскостям проекций. Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле плоскости проекций, другие две – на осях проекций.

6. Конкурирующие точки – точки, одноименные координаты которых совпадают. Существуют горизонтально конкурирующие точки, фронтально конкурирующие точки, профильно конкурирующие точки.

Ключевые слова

· Точка

· Координаты точки

· Точка общего положения

· Точка частного положения

· Конкурирующие точки





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 861 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.