Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Поверхностный тепловой потенциал.




Тепловой потенциал с плотностью называется поверхностным тепловым потенциалом (простого слоя с плотностью ),

Если - ограниченная функция в , то поверхностный тепловой потенциал существует в , принадлежит классу , представляется интегралом Пуассона:

(2.30)

 

Постановка задачи Коши для уравнения теплопроводности.

(2.31)

(2.32)

Считаем и . Предположим, что существует классическое решение этой задачи. Это значит, что , удовлетворяет уравнение (2.31) при и начальное условие (2.32) при .

Продолжая функции и нулём при , заключаем, что продолженные функции и удовлетворяют в уравнению теплопроводности:

(2.33)

Равенство (2.33) показывает, что начальное возмущение для функции играет роль мгновенно действующего источника (типа простого слоя на плоскости ) и классические решения задачи Коши (2.31) - (2.32) содержатся среди тех решений уравнения (2.33), которые обращаются в нуль при . Это даёт основание ввести следующее обобщение задачи Коши для уравнения теплопроводности.

Обобщённой задачей Коши для уравнения теплопроводности с источником назовём задачу о нахождении обобщённой функции , обращающейся в нуль при и удовлетворяющей уравнению теплопроводности

(2.34)

Уравнение (2.34) эквивалентно следующему:

Для любой справедливо равенство:

(2.35)

Из уравнения (2.34) следует, что необходимым условием разрешимости обобщенной задачи Коши является обращение в нуль при .

 

Решение задачи Коши.

Пусть , где и - ограниченная функция в . Тогда решение соответствующей обобщённой задачи Коши существует и единственно в классе и представляется формулой Пуассона:

(2.36)

 

Таким образом, общее решение распределения интересующего нас потока по координате и времени в аналитическом диффузионном приближении может быть представлено в виде двух функций, одна из которых характеризует форму потока в начале координат, вторая характеризует изменения потока во времени, f(x, t)и θ(t) определяются из общей постановки задачи и индивидуальны для каждого потока.

Во многих случаях, решение можно представить в виде сумы конечного ряда:

, (2.37)

где Ф(x, t) – интеграл ошибок.

В более сложных случаях решение может быть выражено в виде бесконечных рядов, полиномов Лежандра, функции Бесселя, Ханкеля или других специализированных функций. Однако такое представление выходит за рамки нашего курса.

 

Численное решение уравнений переноса в диффузионном приближении.

В тех случаях, когда среду нельзя представить в виде уравнений с постоянными коэффициентами, или граничные условия нельзя представить в виде среды с бесконечно распространяющимися потоками, используют более сложную форму.

, (2.38)

где - удельная емкость исследуемого потока (теплоёмкость),

- удельная проводимость исследуемого потока (теплопроводность),

- источник потока,

- коэффициент связывающей скорость прохождения потока в веществах, имеющих различные свойства (коэффициент теплопроводности),

- скорость переноса потока.

Во многих случаях, применим набор граничных условий, который позволяет, не выясняя, что происходит на удаленных границах, ставить задачу, которая описывает процесс с качеством, достаточным для наших целей. Такая постановка особенно важна в случае моделирования процессов проходящих при высоких температурах, давлении или в средах, имеющих высокую степень агрессивности, где затруднено непосредственное измерение параметров.

В этих случаях можно предположить, что:

1. Потоки на невзаимодействующих границах просто отражаются от стенки. Такое приближение называется «зеркально отражающая граница». В этом случае предполагается, что мы можем поставить следующие граничные условия:

, (2.39)

где Uгр+- - соответствует интенсивности прямого и отраженного потока на удаленной границе;

tгр – время за которое поток достигает границы.

2. Все потоки на удаленной границе равны нулю – абсолютное поглощение.

= 0 (2.40)

В этом случае уравнение решается численно с помощью достаточно простых сеточных методов. Однако граничные условия на взаимодействующей границе лучше выбирать, используя решение в аналитическом приближении в узкой области у границы раздела. Определение величины этой области выбирается следующим методом.

Определяется, для каких x и t нашей задачи справедливо выражение:

(2.41)

В этом случае аналитическое решение изменяется вместе с изменением входных параметров и применимо как граничное условие для более точного решения.

 





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 914 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2377 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.