Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение скоростей и ускорений звеньев




 

Скорости и ускорения ведомых звеньев механизма могут быть определены методами планов, кинематических диаграмм и аналитическими. Во всех случаях в качестве исходных данных должны быть известны: схема механизма при определенном положении ведущего звена, его скорость и ускорение.

Метод планов. Построение планов скоростей и ускорений проводится на основе последовательного составления векторных уравнений для всех групп, входящих в механизм, начиная с ведущего звена.

Для определения полной картины скоростей любого звена, входящего в группу, достаточно знать линейные скорости двух точек этого звена или линейную скорость одной точки и угловую скорость звена. Так как скорости конечных элементов звеньев групп известны, то необходимо выбрать общую для двух звеньев точку и записать два уравнения для определения скорости этой точки.

Для групп первого, второго и четвертого видов (рис. 2.3, а, б, г) это постоянная точка - центр средней вращательной пары группы, для других - мгновенная точка на одном звене, совпадающая в данный момент с центром конечной вращательной пары другого звена.

При составлении векторных уравнений следует четко установить точки, скорости которых используются как скорости в переносном движении. Если звенья группы образуют поступательные кинематические, то необходимо использовать точки, принадлежащие направляющим звеньям. В качестве примера рассмотрим построение планов скоростей и ускорений группы второго класса второго вида.

 

а)

 

 

б) в)

 

Рис. 2.3. Кинематическое исследование группы второго класса второго вида

 

План скоростей. В этой группе (рис. 2.3, а) полагаем, что скорости примыкающих звеньев 1 и 4 заданы. Следовательно, скорость точки В2, принадлежащей звену 2, равна скорости точки В1, принадлежащей звену 1, т.е. . Угловая скорость звена 3, образующего поступательную пару со звеном 4, равна заданной угловой скорости звена 4, т.е. w3 = w4. Следовательно, для отыскания скоростей второго звена достаточно определить, кроме известной скорости точки В, скорость еще одной точки, а для третьего звена, кроме известной угловой скорости w3, также скорость какой-либо одной точки. Для решения этой задачи следует рассмотреть движение общей для этих двух звеньев точки С - центра средней вращательной пары.

Рассмотрим движение звена 2 относительно звена 1. Эти звенья образуют вращательную пару, поэтому на основании теоремы о сложении скоростей в сложном движении скорость точки С на звене 2 складывается из скорости переносного (поступательного) движения звена со скоростью и скорости относительного (вращательного) движения звена 2 вокруг точки В:

(2.6)

 

где

Теперь определим скорость точки С, отнеся ее к 3 звену. Звено 3 образует со звеном 4 поступательную пару, поэтому скорость точки С3 можно представить как сумму двух скоростей: скорости точки С4, совпадающей с точкой С3 и принадлежащей среде переноса (в данном случае примыкающему звену 4), и скорости точки С3 относительно точки С4 в поступательном движении звена 3 относительно звена 4 - , т.е.:

 

(2.7)

Точку С4 расположим на плоскости, жестко связанной со звеном 4. Зная закон движения этого звена, можно найти мгновенный цент? вращения (МЦВ) и при известном расстоянии его от точки С4 и угловой скорости w4 определить величину и направление скорости этой точки.

Систему уравнений (2.6) и (2.7) решим графически в выбранном масштабе () на плане скоростей (рис. 2.3, б). Откладываем от полюса рv параллельно вектору скорости точки В отрезок pv в (мм) и через конец этого отрезка проводим прямую, являющуюся линией действия вектора VCB. Эта прямая перпендикулярна к линии ВС.

Далее из полюса pv плана скоростей параллельно вектору (рис. 2.3, а) откладываем отрезок pvc4 = (мм). Через конец этого отрезка (точку С4) проводим прямую, параллельную направляющей поступательной пары D, являющейся линией действия вектора относительной поступательной скорости . Так как , векторные суммы определяются точкой пересечения линий действия относительных скоростей. Точку пересечения этих линий обозначим С, абсолютная скорость точки С определится из условия

Vc = (pvc) v.

Из плана скоростей получим также величины и направления векторов относительных скоростей: вращательной VCB - отрезок bc и поступательной - отрезок C4C. Угловая скорость второго звена:

 

, (2.8)

а направление ее определяется мысленным переносом вектора относительной скорости VСВ - отрезка bc плана скоростей в точку С на плане положения группы.

Пользуясь планом скоростей, можно найти скорость любой точки на звене. Скорость точки S на втором звене определяется из условия представления сложного движения звена 2 как поступательного со скоростью VB и вращательного вокруг точки В, а также как поступательного со скоростью Vc и вращательного вокруг точки С:

} (2.9)

Решая эту систему графически, определяют точку S - конец вектора VS.

Из построения следует, что треугольник csb на плане скоростей подобен треугольнику CSB на плане положений группы и повернут относительно него на 90°. Правильность построения определяется одинаковым порядком букв при обходе контура звена и контура относительных скоростей на плане скоростей в одном и том же направлении.

План ускорений. Исходными данными для построения плана ускорений являются план положения группы, план скоростей (рис. 2.3, а, б) и ускорения звеньев, примыкающих к данной группе. При построении плана ускорений полностью применимы рассуждения, использованные при решении задачи об отыскании скоростей звеньев. Ускорение точки В2 известно, т.к. она совпадает с точкой В1, т.е. , угловое ускорение звена 3 известно, т.к. оно образует со звеном 4 поступательную пару, т.е. e3=e4.

Для нахождения ускорения любой точки звеньев 2 и 3 дополнительно надо знать ускорение хотя бы одной точки на каждом из этих звеньев. В качестве такой точки следует использовать центр шарнира С, являющийся общей точкой для звеньев 2 и 3. Рассматривая вращательное движение звена 2 вокруг точки В и поступательное - звена 3 относительно звена 4, записываем следующие векторные уравнения:

 

} (2.10)

Систему уравнений (2.10) решим графически. На чертеже (рис. 2.3, в) обозначим полюс плана ускорений ра и выберем масштаб построения плана ускорений . Откладываем от полюса ра параллельно вектору ускорения аВ отрезок (мм). Нормальное ускорение аСВn точки С в относительном движении направлено от точки С вдоль звена 2 к точке В; величину его, исходя из построенного плана скоростей (рис. 2.3, б), определим по формуле:

 

(2.11)

Из точки b плана ускорений проводим линию действия ускорения в направлении от точки С к точке В и откладываем отрезок .

Из точки n перпендикулярно к отрезку bn проводим линию действия тангенциального ускорения . Далее из полюса ра проводим линию параллельно известному направлению ускорения (рис. 2.3, а) и откладываем отрезок:

Ускорение Кориолиса (поворотное ускорение):

(2.12)

откладываем на плане ускорения в виде отрезка (мм). Направление указанного отрезка определяется путем поворота вектора относительной скорости С4С на 90° в сторону

вращения среды поворота - звена 4. Из точки К проводим линию действия ускорения , параллельную направляющей поступательной пары, т.е. перпендикулярно к вектору ускорений . Пересечение линий действия и определит наложение точки C.

Из плана ускорения получим также величины и направления векторов относительных ускорений (м/с2) и (м/с2). Угловое ускорение звена 2 определится по формуле:

e (2.13)

Направление e2 устанавливается путем мысленного переноса вектора nc в точку С и определения направления вращения звена 2 вокруг точки В под влиянием этого вектора.

Пользуясь планом ускорений, можно найти ускорение любой точки на звене 2 и 3. Например, требуется определить ускорение точки S на звене 2. На основании известного положения о подобии фигур звена и плана относительных ускорений строим на отрезке bc плана ускорений треугольник csb, подобный треугольнику CSB на звене 2, соблюдая при этом одинаковую последовательность расположения букв при обходе контуров этих треугольников в одном направлении. Соединяя полученную в результате построения точку S с полюсом ра, получаем отрезок pas, определяющий в масштабе ускорение точки S:as = (pas)

Аналитический метод. Этот метод позволяет определять скорости и ускорения с более высокой точностью. Обычно применяют метод последовательного дифференцирования функции перемещения точки, скорость и ускорение которой необходимо определить. Функцию перемещения S=S(t) или S=S(j) можно получить из геометрических соображений, как, например, это сделано для кривошипно-ползунного механизма - формула (2.5), а ее скорость и ускорение - путем дифференцирования уравнений (2.3).

Дифференцируя уравнения (2.3) по обобщенной координате j1 (углу поворота ведущего звена), получают не истинную угловую скорость, а безразмерную величину , получившую название аналога угловой скорости. Связь между аналогом скорости и действительной угловой скоростью i-го звена определится из соотношения:

,

т.е. угловая скорость i-го звена wi равна произведению угловой скорости ведущего звена wi на аналог скорости. Продифференцировав уравнения (2.3) и подставив значение аналога скорости, получаем уравнения для определения угловой скорости, получаем уравнения для определения угловой скорости шатуна w2 (рис. 2.2) и относительной скорости звена 3 - u30=uс:

(2.17)

Определим значение w2 из второго уравнения (2.17):

и подставим его в первое уравнение, с учетом формулы (2.4), получим значение uс:

(2.18)

При вторичном дифференцировании уравнений (2.3) с использованием понятия аналога углового ускорения, представляющего вторую производную по углу поворота ведущего звена , можно определить действительное ускорение i-го звена, умножив аналог углового ускорения на квадрат угловой скорости ведущего звена w12. При этом принимая, что w1= const, получают уравнения для определения углового ускорения шатуна e2 и относительного ускорения звена

(2.19)

из уравнения (2.19) получим значение:

.

Получив значения угловых скоростей и ускорений, можно определить скорость и ускорение любой точки звеньев механизма. В тех случаях, когда l £ 1/3, пользуются приближенными формулами при определении перемещения, скорости и ускорения ползуна. При этом перемещение ползуна Sc измеряем от мертвого положения Со (рис. 2.2):

Sc = l1 + l2 - Xc, или с учетом (2.5) получим:

(2.20)

Раскладывая в ряд радикал, входящий в формулу (2.20) по биному Ньютона и ограничиваясь его первыми двумя членами, получим:

(2.21)

После дифференцирования скорость uс и ускорение ас определяют по формулам:

uс @ w1l1 (sinj1 + l/2 sin 2j1) (2.22)

aс @ w12l1 (cosj1 + lcos 2j1) (2.23)






Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 790 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.