Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Образование плоских механизмов по Ассуру




 

Принципы классификации. Для удобства изучения механизмов и разработки общих методов проектирования и расчета механизмы целесообразно классифицировать. Могут быть использованы разные признаки классификации: характер движения - плоские и пространственные; вид кинематических пар - механизмы с низшими и высшими парами; назначение - механизмы приборов для контроля давлений, температуры, уровня и т.д.; принцип передачи усилий - механизмы трения и зацепления; конструктивные признаки - шарнирно-рычажные, кулачковые, фрикционные, зубчатые, червячные и т.д. В зависимости от задач, поставленных перед исследователем, пользуются той или иной классификацией, лучше всего удовлетворяющей решению этих задач.

Структурная классификация. Одной из распространенных классификаций плоских шарнирных механизмов с парами пятого класса является структурная классификация, предложенная И.И. Артоболевским на основании идей Л.В. Ассура. Согласно этой классификации механизмы объединяются в классы от первого и выше по структурным признакам. Механизм первого класса состоит из ведущего звена и стойки, соединенных кинематической парой пятого класса; механизмы более высоких классов образуются последовательным присоединением к механизму первого класса кинематических цепей, не изменяющих степени подвижности этого исходного механизма, т.е. имеющих степень подвижности, равную нулю.

Группа. Кинематическая цепь, которая, будучи присоединенной свободными элементами пар (внешние пары) к стойке, обладает нулевой степенью подвижности, называется группой.

Полагая, что в состав группы входят только пары пятого класса (пары четвертого класса можно условно заменить цепями с парами пятого класса), для группы, как частного случая цепи, получаем условие W = 3n - 2p5 = 0, откуда:

 

р5 = n (1.4)

Таким образом, группа может состоять из двух подвижных звеньев и трех кинематических пар пятого класса (рис. 1.5, а), четырех подвижных звеньев и шести пар пятого класса (рис. 1.5, г, д) и т.д.

 

 

а) б) в)

 

г) д)

 

Рис. 1.5. Контуры различных классов

 

Контур и вид группы. Группы делятся на классы в зависимости от класса контура. Контуром называют замкнутую часть плоскости, занятую звеном или ограниченную со всех сторон звеньями. Класс контура определяется числом кинематических пар, входящих в этот контур. Контур, изображенный на рис. 1.5, б - второго класса (эквивалентное изображение дано на рис. 1.5, в). На рис. 1.5, д изображена группа, в состав которой входят три контура: АВС - контур третьего класса, BDFC - контур четвертого класса, DEF - контур третьего класса.

Класс группы определяется наивысшим классом контура, входящего в ее состав. Группа второго класса представлена на рис. 1.5, а, группы третьего и четвертого классов - на рис. 1.5, г и 5, д соответственно.

Наиболее распространенными являются группы второго класса, которые разделяют на пять видов. Вид группы второго класса определяется в зависимости от числа и относительного расположения поступательных и вращательных кинематических пар в ней (рис. 1.6, а - д).

 

а) первого б) второго

вида вида

 

в) третьего г) четвёртого

вида вида

 

г) четвертого д) пятого

вида вида

 

Рис. 1.6. Группы второго вида

 

Класс механизма. По наивысшему классу группы, входящей в состав данного механизма, определяется его класс. Для определения класса механизма необходимо выделить в нем группы, начиная с наиболее удаленных от ведущего звена, в результате чего остается механизм первого класса. Выделив группу, одновременно проверяют степень подвижности W оставшейся части механизма.

Этот процесс исследования называется структурным анализом механизма. Порядок проведения структурного анализа: а) определяется количество подвижных звеньев и кинематических пар; б) устанавливается наличие пассивных связей и лишних степеней свободы, соответствующие звенья, вносящие их, исключаются; в) производится замена высших кинематических пар цепями с низшими парами; г) выделяются группы и устанавливается их класс и вид; д) определяется класс механизма.

 

Пример: Провести структурный анализ механизма привода конвейера (рис. 1.7, а).

а)

б) в) г)

 

Рис. 1.7. Структурный анализ привода конвейера

 

Механизм конвейера состоит из пяти подвижных звеньев (n = 5) и семи кинематических пар пятого класса (р5 = 7); пары четвертого класса отсутствуют (р4 = 0). Степень подвижности цепи по формуле W = 3n - р5 - р4 = 3*2 - 2*7 - 0 = 1, следовательно, эта цепь будет механизмом при заданном законе движения одного звена (звено 1). В механизме пассивных связей и лишних степеней свободы нет.

Переходим к выделению структурных групп, начиная со звеньев, наиболее удаленных от ведущего звена (рис. 1.7, б). Выделенные группы и порядок их выделения представлены на рис. 1.7, в, г. Каждая группа состоит из двух звеньев и трех кинематических пар пятого класса и поэтому является группой второго класса; первая группа (рис. 1.7, в) - второго вида (одна крайняя пара поступательная); вторая группа (рис. 1.7, г) - первого вида (все пары вращательные). Следовательно, механизм привода конвейера - второго класса, т.к. наивысший класс группы, входящей в состав этого механизма, второй.






Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 344 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.