Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Канонические уравнения эллипса, гиперболы, параболы




Кривые второго порядка определяются уравнениями второй степени относительно декартовых прямоугольных координат. Общее уравнение второй степени относительно и имеет вид:

. (5.17)

Для любого уравнения (5.17) три величины

, , (5.18)

сохраняются при переносе и повороте осей координат (являются инвариантами). Эти инварианты определяют свойства кривой второго порядка, не зависящие от ее положения на плоскости.

Классификация кривых второго порядка, основанная на их инвариантах:

1) эллипс при , ;

2) окружность при , , или , ;

3) точка (эллипс, выродившийся в точку) при , ;

4) ни одной действительной точки при , ;

5) гипербола при ;

6) пара пересекающихся прямых (выродившаяся гипербола) при , ;

7) парабола при ;

8) пара параллельных прямых или одна прямая (пара совпавших прямых) или ни одной действительной точки при , .

Таким образом, уравнение (5.17) может задавать эллипс (частный случай – окружность), гиперболу, параболу (невырожденные кривые второго порядка) или пустое множество точек, одну точку, одну прямую, пару прямых (вырожденные кривые).

Уравнение кривой второго порядка подходящим переносом начала отсчета и поворотом осей координат может быть приведено к каноническому (или стандартному) виду.

Эллипс – геометрическое место точек (ГМТ), сумма расстояний которых до двух данных точек и , называемых фокусами, есть величина постоянная. Если оси прямоугольной системы координат направлены по осям симметрии эллипса (рис. 5.12), то его уравнение принимает следующий стандартный вид (каноническое уравнение эллипса):

, (5.19)

где – фиксированная сумма расстояний фокусов и до любой точки эллипса (см. рис. 5.12), – расстояние между фокусами (фокусное расстояние), . Отрезки и , отсекаемые эллипсом на его осях симметрии, есть длины большой и малой осей эллипса, точки , , и вершины эллипса, точка – его центр. Величина называется эксцентриситетом эллипса, а коэффициентом сжатия эллипса.

Эллипс, центр которого не совпадает с началом координат, но большая и малая оси которого параллельны соответственно осям координат и , задается общим уравнением (5.17), в котором и ( и одного знака).

Если эксцентриситет (оба фокуса находятся в начале координат, т. е. и, следовательно, ), имеем частный случай эллипса – окружность радиуса . Общее уравнение (5.17) при задает окружность, если и . Общее уравнение окружности радиуса можно привести к виду:

,

где точка – центр окружности.

 

Пример. Записать каноническое уравнение эллипса, если сумма расстояний произвольной его точки до фокусов равна 10, а фокусное расстояние равно 8.

◄ По условиям , . Находим . Подставляя найденные значения и в (5.19), получаем искомое каноническое уравнение эллипса: . ►

Гипербола – ГМТ, абсолютное значение разности расстояний которых до двух данных точек и , называемых фокусами, есть величина постоянная. Если оси прямоугольной системы координат направлены по осям симметрии гиперболы (рис. 5.13), то ее уравнение принимает следующий стандартный вид (каноническое уравнение гиперболы):

 

, (5.20)

где – фиксированная абсолютная величина разности расстояний фокусов и до любой точки гиперболы (см. рис. 5.13), – расстояние между фокусами (фокусное расстояние), . Отрезок, отсекаемый левой и правой ветвями гиперболы на оси , есть длина действительной оси гиперболы, равная , точки , вершины гиперболы. Мнимой осью называется ось (ось ), перпендикулярная к действительной оси (ось ). Две прямые, проходящие по диагоналям прямоугольника со сторонами и с центром в центре гиперболы (начале координат) (см. рис. 5.13), являются асимптотами гиперболы. С этими прямыми гипербола неограниченно сближается при неограниченном возрастании абсолютной величины координаты точки гиперболы. Уравнения асимптот гиперболы и . Вершины гиперболы касаются вертикальных противоположных сторон прямоугольника.

Гипербола, центр которой не совпадает с началом координат, но действительная и мнимая оси которой параллельны соответственно осям координат и , задается общим уравнением (5.17), в котором и ( и разных знаков).

Уравнение задает на плоскости гиперболу, сопряженную к гиперболе, уравнение которой имеет вид (5.20). На рис. 5.14 представлены такие сопряженные гиперболы.

 

Пример. Гипербола задана каноническим уравнением . Найти ее фокусное расстояние и расстояние между вершинами (длину действительной оси).

◄ Из уравнения имеем , . Для гиперболы , отсюда для фокусного расстояния будем иметь . Расстояние между вершинами гиперболы равно . ►

 

Гипербола – ГМТ, равноудаленных от данной точки плоскости , называемой фокусом, и данной прямой , называемой директрисой

(, см. рис. 5.15). В системе координат, центр которой совмещен с вершиной параболы, а ось направлена по оси параболы (рис. 5.15), ее уравнение принимает следующий стандартный вид (каноническое уравнение параболы):

, (5.21)

где – параметр параболы.

Парабола, вершина которой не совпадает с началом координат, но ось которой параллельна оси координат , задается общим уравнением (5.17), в котором и либо либо .

 

Пример. Парабола задана уравнением . Найти параметр параболы .

◄ Заменой данное уравнение приводится к каноническому виду , отсюда имеем . Замена соответствует преобразованию исходной системы координат. Рис. 5.15 позволяет легко понять, что в исходной системе, в которой уравнение имеет вид , ветви параболы направлены вверх (по оси ), ее фокус находится на оси на расстоянии от начала координат, директриса параллельна оси , находясь от нее также на расстоянии

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 2304 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2187 - | 2107 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.