Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Историческая эволюция науки.Наука аристотелевского и галилеевского типа.




Философия науки изучает природу современного научного знания. Современной называется новоевропейская наука, возникшая в результате научной революции XVI - XVII вв. и связанная с именами таких великих ученых и философов, как Галилей и Кеплер, Бэкон и Декарт, Гюйгенс и Ньютон. Кратко рассмотрим основные черты этой науки и ее отличие от предшествующего научного знания.

В европейской культуре собственно научное знание появилось около двух с половиной тысячелетий назад. Первые античные мыслители, создававшие учения о природе - Фалес, Пифагор, Анаксимандр и другие, многое почерпнули из мудрости Древнего Египта и Востока. Однако те учения, которые они разрабатывали, отличались принципиальной новизной. Во-первых, от разрозненных наблюдений и рецептов они перешли к построению логически связанных и согласованных систем знания - теорий. Во-вторых, эти теории не были узкопрактическими. Основным мотивом первых ученых было далекое от практических нужд стремление понять исходные начала и принципы мироздания. Само древнегреческое слово "теория" означает "созерцание". Согласно Аристотелю, "теория" - это такое знание, которое ищут ради него самого, а не для каких-то утилитарных целей. В-третьих, теоретическое знание в Древней Греции разрабатывали и хранили не жрецы, а светские люди, поэтому они не придавали ему сакральных черт и обучали всех желающих и способных к науке людей.

Аристотеля без особых натяжек можно считать и первым философом науки. Он создал формальную логику - инструмент ("органон") рационального научного рассуждения; проанализировал и классифицировал различные виды знания: разграничил философию (метафизику), математику, науки о природе и теоретическое знание о человеке, отличил от всего этого практическое знание - мастерство и техническое знание, практический здравый смысл.У Аристотеля можно найти представление о том, как нужно правильно строить научное исследование и излагать его результаты. Работа ученого, по его мнению, должна содержать четыре основные этапа:

• изложение истории изучаемого вопроса, сопровождаемое критикой предложенных предшественниками точек зрения и решений;

• на основе этого - четкая постановка проблемы, которую нужно решить;

• выдвижение собственного решения - гипотезы;

• обоснование этого решения с помощью логических аргументов и обращения к данным наблюдений, демонстрация преимуществ предложенной точки зрения перед предшествующими.

Аристотель, наконец, дал ясное учение о том, как должно выглядеть полное и четкое научное объяснение явления или события. Согласно его философии, каждое явление обусловлено четырьмя причинами: формальной (связанной с сущностью явления, его структурой или понятием), материальной (обусловленной субстратом, веществом, в котором воплощается эта форма или структура), движущей (конкретной побудительной причиной), целевой (связанной с тем, "ради чего", "зачем" происходит явление). Если удается установить и объяснить все эти причины, то задача науки оказывается полностью выполненной, явление считается познанным и объясненным.Например, нам нужно объяснить, почему хамелеон меняет цвет кожи, когда переползает с освещенного зеленого листа на темно-бурую ветку. Формальной причиной здесь является суть хамелеона как живого существа, способного менять цвет кожи в зависимости от освещения и цвета фона. Материальная причина - особая субстанция, вещество в его коже, которое изменяет ее цвет. Действующей причиной будет факт переползания из светлого места в темное. Целевая причина изменения цвета кожи - стремление хамелеона сделаться незаметным для потенциальных врагов.

Величие античной учености и ныне вызывает восхищение. Однако нужно видеть и ограниченность "аристотелевской" науки. Прежде всего она описывала мир как замкнутый и относительно небольшой по размерам Космос, в центре которого находится Земля. Математика считалась наукой об идеальных формах, применительно к природе область ее применений ограничивалась расчетами движения небесных тел в "надлунном мире", поскольку он понимался как мир идеальных движений и сфер. В "подлунном мире", в познании земных явлений, по Аристотелю, возможны только нематематические, качественные теории. Очень важно также то, что античным ученым была чужда идея точного контролируемого эксперимента: их учения опирались на опыт, на эмпирию, но это было обычное наблюдение вещей и событий в их естественной среде с помощью обычных человеческих органов чувств. Вероятно, Аристотель сильно удивился бы, если бы попал в современную научную лабораторию со сложным экспериментальным оборудованием и узнал, что в таком отгороженном от света и мира помещении люди изучают "природу".

Аристотелевское понимание науки и многие его конкретные теории пользовались непререкаемым авторитетом многие столетия. Только с эпохи Возрождения появились попытки разработать новую картину мира и новый "органон" научного познания. Но решающий удар по аристотелизму нанес Галилей: он не только всесторонне обосновал учение Коперника, но и создал новое понимание природы науки, разработал и применил метод точного экспериментального исследования, которого не знали ни античные, ни средневековые ученые.

Галилео Галилей (1564 - 1642) - знаменитый итальянский ученый, родился в Пизе в знатной, но обедневшей семье. Учился в университете своего родного города, сначала изучал медицину, но потом посвятил себя физике и математике. В 1592 г. Галилей был приглашен на должность профессора математики в университет Падуи, где он преподавал до 1610 г. Именно в это время Галилей произвел свои знаменитые телескопические наблюдения пятен на Солнце, поверхности Луны и спутников Юпитера. Эти наблюдения не укладывались в аристотелевскую картину мира, которую в то время поддерживала церковь. Затем Галилей стал придворным математиком у князя Тоскании. Здесь он однажды прочитал перед монахами лекцию, смысл которой состоял в демонстрации того, как можно согласовать предложенную Коперником картину Вселенной со Священным писанием. После этого он много дебатировал на эти темы с церковными служителями. В 1623 г. симпатизировавший взглядам Галилея кардинал Барберини был избран Римским Папой. Это позволило Галилею достаточно свободно заниматься сравнением коперниканского и птолемеевского учений, результатом чего стали "Диалоги о двух главнейших системах мира" (1632). Хотя в предисловии к этой знаменитой книге ученый отмечал, что соперничающие системы являются не более чем математическими гипотезами, его аргументация в пользу теории Коперника произвела очень сильное впечатление на ученый мир. Причем книга была написана не на ученой латыни, а на живом итальянском языке, что значительно расширило круг ее читателей. Церковь в лице инквизиции заставила Галилея отречься от своих взглядов. Но, и отправленный под надзор во Флоренцию, ученый продолжал работать, он подверг критике основные постулаты аристотелевской физики, выбив еще одну основу из-под геоцентрической картины мира.

В отличие от Аристотеля Галилей был убежден, что подлинным языком, на котором могут быть выражены законы природы, является язык математики. Он заявлял: "Философия написана в величайшей книге, которая всегда открыта перед нашими глазами (я разумею Вселенную), но ее нельзя понять, не научившись сначала понимать ее язык и не изучив буквы, которыми она написана. А написана она на математическом языке, и ее буквы это - треугольники, дуги и другие геометрические фигуры, без каковых невозможно понять по-человечески ее слова; без них тщетное кружение в темном лабиринте».

Но как можно выразить бесконечно разнообразный и изменчивый мир природных явлений абстрактным и неизменным математическим языком? Чтобы это стало возможным, доказывал Галилей, нужно ограничить предмет естествознания только объективными, "первичными" качествами вещей, такими, как форма тел, их величина, масса, положение в пространстве и характеристики их движения. "Вторичные качества" - цвет, вкус, запах, звук - не являются объективными свойствами вещей. Они - результат воздействия реальных тел и процессов на органы чувств, и в том виде, в каком они переживаются, существуют только в сознании воспринимающего их субъекта.

Вместе с тем Галилей обнаружил, что характеристики некоторых вторичных качеств соответствуют определенным, точно фиксируемым изменениям в первичных качествах. Например, высота звука, испускаемого струной, определяется ее длиной, толщиной и натяжением. Субъективное ощущение теплоты можно соотнести с изменением уровня жидкости в трубке термометра. Таким образом, ряд вторичных качеств можно свести к измеряемым геометрическим и механическим величинам.

С помощью такого методологического шага Галилею удалось осуществить "математизацию природы". Объяснению явлений, исходящему из "сущностей", "качеств" вещей (характерному для аристотелевской науки), было противопоставлено убеждение в том, что все качественные различия происходят из количественных различий в форме, движении, массе частиц вещества. Именно эти количественные характеристики могут быть выражены в точных математических закономерностях. В рамках такого метода Галилею уже не требовалось прибегать к объяснению явлений через аристотелевские "целевые причины". Этому он противопоставил идею "естественного закона" - бесконечной механической причинной цепи, пронизывающей весь мир.

Начатое Галилеем преобразование познания продолжили Декарт, Ньютон и другие "отцы" новоевропейской науки. Благодаря их усилиям сложилась новая форма познания природы - математизированное естествознание, опирающееся на точный эксперимент. В отличие от созерцательной установки античного теоретизирования, соотносимого с наблюдениями явлений в их естественном течении, новоевропейская наука использует "активные", конструктивно-математические приемы построения теорий и опирается на методы точного измерения и экспериментального исследования явлений при строго контролируемых - лабораторных, "искусственных" - условиях.

Несмотря на большие изменения, которые произошли в науке со времен Галилея и Ньютона до наших дней, она сохранила и упрочила это свое методологическое ядро. Современная наука продолжает оставаться наукой новоевропейского, "галилеевского" типа. И именно она является основным предметом анализа философии науки.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 1378 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2461 - | 2389 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.