Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Высказывания и высказывательные формы




 

 


А — «фигура является многоугольником», составное предложение: «Не А» — «фигура не является многоугольником».

Взаимосвязь оценки воспитателя и выбора ребенка можно уви­деть на рисунке 15.

Если предложение А — элементарное высказывание, то для по­строения отрицания следует либо предварить его словами «неверно, что...», либо поставить частицу «не» перед сказуемым (если А содер­жит частицу «не», то отбросить ее).

Высказывания с кванторами

Высказывательные формы можно обратить в высказывание, не только подставив значения переменных. Иногда используют другие способы.

Задание 9

Запишите натуральные числе от 1 до 9. Определите значение ис­тинности предложений:

«Числа однозначные»; «Числа отрицательные»;

«Числа четные».

Нельзя ответить на вопрос, истинны или ложны эти предложе­ния, так как они являются высказывательными формами. Для обра­щения их в высказывания необходимо уточнение, о каких числах идет речь. Для этого можно, например, в начале данных предложе­ний поставить слова «все» или «некоторые».

Слова, которые превращают высказывательную форму в выска­зывание, называются кванторами. Кванторы бывают двух видов: кванторы общности («все», «любой», «всякий», «каждый?) и кванто­ры существования («некоторые», «существуют», «имеются», «найдет­ся», «есть», «хотя бы один»).

При изменении вида квантора значение истинности высказыва­ния может поменяться, а может сохраниться. Например, для чисел из задания 9 предложения: «Все числа однозначные», «Имеются од­нозначные числа», «Некоторые из данных чисел четные» — истин­ные высказывания; а предложения: «Некоторые числа отрицатель­ные», «Все числа отрицательные», «Все числа четные» — ложные высказывания.

Обычно мы определяем значение истинности интуитивно вер­но. При затруднении, чтобы установить значение истинности вы­сказываний с кванторами, надо знать некоторые правила.

Истинность высказываний с квантором общности устанавлива­ется путем доказательства. Чтобы убедиться в ложности, доста­точно привести контрпример.

Истинность высказывании с квантором существования устанав­ливается при помощи конкретного примера. Чтобы убедиться в его ложности, необходимо провести доказательство.

Например, рассмотрим предложения для чисел из задания 9:

«Все числа однозначные» - истинное высказывание, так как, проверив каждое число (способ доказательства - полная индукция), мы убеждаемся в справедливости высказывания.

«Все числа четные» — ложное высказывание, так как, например, число 5 не является отрицательным (контрпример).

«Некоторые из данных чисел четные» — истинное высказыва­ние, так как, например, число 4 — четное (пример).

«Некоторые числа отрицательные» — ложное высказывание, так как, проверив каждое число (способ доказательства — полная ин­дукция), можно в этом убедиться.

В предложенных примерах использовался такой способ доказа­тельства, как полная индукция (рассматривался каждый частный слу­чай), возможны и другие способы доказательств (см. п. 1.9).

Часто в математических предложениях кванторы общности опускаются, но подразумеваются. Например, в предложении «Сум­ма углов треугольника равна 180°» квантор общности явно не зву­чит, но подразумевается: «Сумма углов любого треугольника равна 180°».

Задание 10

Установите значение истинности денных предложений. Свои отве­ты обоснуйте:

• «Любой прямоугольник является квадратом».

• «У всех выпуклых четырехугольников сумма углов рана 360°».

• «Существуют треугольники, у которых все углы тупые».

• «Существуют равносторонние треугольники».

Уже в дошкольном возрасте детей учат правильно рассуждать. Например.

 

 

 


Имея математическое предложение: «Хотя бы один из

предметов - мяч», рассуждаем в соответствии с правилами логики (рис. 18).





Поделиться с друзьями:


Дата добавления: 2016-11-20; Мы поможем в написании ваших работ!; просмотров: 1743 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2948 - | 2657 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.