Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные правила определения через род и видовое отличие




1) Определение должно быть соразмерным.

Это означает, что объемы определяемого и определяющего по­нятий должны совпадать. Например, в определении «Квадрат — это четырехугольник с равными сторонами» допущена ошибка. Здесь объем определяемого понятия меньше объема определяющего поня­тия (в объеме определяющего понятия содержатся ромбы, которые необязательно являются квадратами).

2) В определении (или их системе) не должно быть порочного кру­га.

Круг возникает, когда определяемое понятие определяется через само себя. Круг в системе определений означает, что определяемое понятие определяется через определяющее, а определяющее через определяемое. Например: «Перпендикулярные прямые — это пря­мые, которые при пересечении образуют прямые углы. Прямые углы - это углы, которые образуются при пересечении перпендикулярных прямых».

3) Определение должно быть ясным.

Смысл всех терминов, входящих в определяющую часть, должен быть ясен и четко определен. Например, если дети не знакомы с прямым углом, им нельзя давать такое определение: «Прямоуголь­ник — это четырехугольник, у которого все углы прямые».

4) Определяемый объект должен существовать.

Иногда, давая определения по аналогии, допускают ошибки. Например: «Прямоугольный треугольник - это треугольник, у кото­рого все углы прямые». Для испрачения оплошности можно пред­ложить им нарисовать этот объект.

5) Принято называть ближайшее родовое понятие.

Для распознавания объекта необязательно проверять у него все существенные свойства, достаточно лишь некоторых. Этим пользу­ются, когда понятию дают определение.

Определение понятия — это логическая операция, которая рас­крывает содержание понятия либо устанавливает значение термина.

Определение понятия позволяет отличать определяемые объ­екты от других объектов. Так, например, определение понятия «прямоугольный треугольник» позволяет отличить его от других треугольников.

Существуют различные виды определений. Различают явные и неявные определения (рис. 5). Явные определения имеют форму равенства двух понятий. Одно из них называют определяемым, другое — определяющим.

Например: «Прямоугольный треугольник — это треугольник, у которого есть прямой угол». Здесь определяемое понятие — «прямо­угольный треугольник», а определяющее — «треугольник, у которого есть прямой угол».

Самый распространенный вид явных определений - это опре­деление через род и видовое отличие. Приведенное выше опреде­ление прямоугольного треугольника относится к таким определени­ям. Понятие «треугольник», содержащееся в определяющем поня­тии, является ближайшим родовым понятием по отношению к понятию «прямоугольный треугольник», а свойство «иметь прямой угол» позволяет из всех треугольников выделить один из видов — прямоугольный треугольник.

Видовое отличие - существенное свойство, которое отличает ви­довое понятие от всего рода.

Структура определения через род и видовое отличие изображена схематично на рисунке 6. По данной схеме можно строить опреде­ления понятий не только в математике, но и в других науках.

Для понятия часто существует несколько родовых понятий, так, например, для понятия «квадрат» можно сформулировать разные определения:

Квадрат — это прямоугольник, у которого все стороны равны;

- это ромб, у которого все углы прямые;

- это четырехугольник, у которого все стороны равны и все углы прямые;

- это многоугольник, у которого 4 равные стороны и 4 пря­мых угла.

Удобным считается первое определение, так как «прямоуголь­ник» — ближайшее родовое понятие по отношению к понятию «квадрат».

6) Желательно, чтобы определяющее не содержало избыточных свойств.

Удобно перечислить многие существенные свойства, но опреде­ление становится громоздким. При работе с детьми иногда это пра­вило нарушают. Например, ребенок спешит сообщить все сущест­венные свойства квадрата и дает такое определение: «Квадрат — это четырехугольник, у которого 4 прямых угла и 4 равные стороны».

Задание 4

Имеются пи логические ошибки в следующих определениях:

• параллельные прямые — прямые, не имеющие общих точек или совпадающие;

• смежные углы — это углы, которые в сумме составляют 180 гра­дусов;

• прямоугольник - это четырехугольник, у которого все углы пря­мые, а противоположные стороны равны;

• тупоугольный треугольник — это треугольник, у которого все углы тупые;

• перпендикулярные прямые — это прямые, которые перпен­дикулярны.

При формировании у детей начальных математических пред­ставлений чаще всего применяют неявные определения, которые не имеют формы равенства двух понятий, например остенсивные и контекстуальные определения.

Остенсивное определение — это неявное определение, при кото­ром называют и показывают объект, термин для которого вводят.

 

Например:

- это круг (рис. 7).

Определения посредством показа отличаются неза­вершенностью, неокончательностью, но именно они связывают слова с вещами.

При ознакомлении дошкольников и младших школьников с математическими понятиями, особенно Рис 7 в начале обучения, в основном используются остенсивные определения. Однако в дальнейшем это требу­ет изучения существенных свойств объектов, то есть формирования у детей представлений об объеме и содержании понятий, первоначально определенных остенсивно.

Контекстуальное определение — неявное определение, в котором содержание нового понятия раскрывается в контексте — отрывке текста.

Например, при формировании у дошкольников счетной дея­тельности детей учат правильно использовать количественные и по­рядковые числительные: «Чтобы ответить на вопрос «сколько?», надо считать так: один, два, три, — это количественный счет, а что­бы ответить на вопрос «который?», надо считать так: первый, вто­рой, третий, — это порядковый счет».

Контекстуальные определения остаются в значительной мере неполными, нечеткими, поэтому необходимо выявление существен­ных свойств таким образом определенного понятия.





Поделиться с друзьями:


Дата добавления: 2016-11-20; Мы поможем в написании ваших работ!; просмотров: 1739 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2947 - | 2598 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.