Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Геометрическое представление математических моделей




Лекция 2
Геометрически математическая модель может быть представлена как некоторая поверхность отклика, соответствующая расположению точек W = W(x) в k-мерном факторном пространстве Х.

Наглядно можно представить себе только одномерную и двухмерную поверхности отклика, причем в последнем случае удобно пользоваться топографическим способом изображения рельефа поверхности с помощью линий уровня (изолиний), построенных в двумерном факторном пространстве Х. (Рис. 1.4).

 
 

 


Рис. 1.4

Область, в которой определена поверхность отклика, называется областью определения Х*.

Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х) и выделяется с помощью ограничений, наложенных на управляющие переменные xi, записанных в виде равенств

xi = Ci, i = 1,…, m;

fj (x) = Cj, j = 1,…, l

или неравенств

xi min £ xi £ xi max, i = 1,…, k;

fj (x) £ Cj, j = 1,…, n,

При этом функции fj (x) могут зависеть как одновременно от всех переменных, так и от некоторой их части.

Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания).

Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности.

Количество вершин (впадин) определяет модальность поверхности отклика.

Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной.

Характер изменения функции при этом может быть различным (Рис. 1.5).

 

W W   W  
  x* x   x* x   x* x

а б в

Рис. 1.5

Модель может иметь разрывы первого рода (см. рис. 1.5. а). Непрерывная унимодальная модель может иметь точки разрыва производной – разрывы второго рода (см. рис. 1.5. б). На рис. 1.5 в показана непрерывно-дифференцируемая унимодальная модель.

Для всех трех случаев, представленных на рис. 1.5, выполняется общее требование унимодальности:

Если W(x*) = extr W, то из условия х1 < x2 < x* (x1 > x2 > x*) следует
W(x1) < W(x2) < W(x*), если extr – максимум, или W(x1) > W(x2) > W(x*), если extr – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно падает (растет).

Наряду с унимодальными бывают полимодальные модели (Рис. 1.6).

 
 


W   x 2   X 1* X 2*    
  x 1* x 2* x 3* x   x 1  

 

Рис. 1.6

Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 1.7). Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным хi (i =1,2); точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции); точка с расположена на «плато», на котором низкая контрастность по всем переменным хi говорит о близости экстремума.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 808 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.