Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Родо-видовые и другие отношения понятий




Между понятиями существуют отношения, отражающие связи соответствующих понятиям множеств объектов. Важнейшей формой связи понятий является их родо-видовое подчинение, которое складывается при формировании понятий и обнаруживается там и тогда, где и когда имеет место непосредственная преемственность в переходах от одних понятий к другим. Например, объединение понятий «сложение», «вычитание», «умножение» и «деление» есть понятие «арифметическое действие». Оно будет подчинять четыре предыдущих понятия как видовые и станет для них родовым. На базе понятий (видовых) «арифметическое действие», «возведение в степень» и «извлечение корня» образуется новое (родовое) понятие «алгебраическая операция», с которым связаны такие понятия, как «алгебраическое выражение», «алгебраическая функция», «алгебраическое уравнение».

На кругах Эйлера каждое родо-видовое отношение понятий, из которых В – вид, Р – род, изображается так (рис. 1):

 
 


Р

 

В

 

 

Понятие Р является ближайшим для вида В.

Не всегда легко и однозначно можно определить ближайший род. Если между зависимыми понятиями нельзя поставить еще одно понятие, будем иметь отношения ближайшего рода и вида.

Так между понятиями «прямоугольник» и «четырехугольник» можно поставить понятие «параллелограмм», поэтому ближайшим родом для понятия «прямоугольник» является понятие «параллелограмм». Для понятия «квадрат» имеется два ближайших понятия: «прямоугольник» и «ромб» (проиллюстрируйте самостоятельно этот факт на кругах Эйлера).

Существуют и другие отношения между понятиями.

Сравнимые (имеющие общие свойства) и несравнимые (когда нет общих свойств). Например, треугольник, квадрат и круг – сравнимые понятия (Почему?). Треугольник и дробь – несравнимые. Сравнимые понятия могут быть совместимыми и несовместимыми, в зависимости от того пересекаются их объемы или нет.

Совместимые понятия могут быть равнозначными (полупрямая и луч), пересекающимися (целое число и положительное число).

Определение понятий

Любая наука, в том числе и математика, ставит вопросы типа: «Что это такое?» На этот вопрос отвечают определения понятий. Например, что такое клетка? – в биологии, что такое материя? – в философии, что такое пирамида? – в геометрии. Определением принято называть предложение, в котором разъясняется смысл понятия.

Чтобы определить понятие, нужно совершить некоторую логическую операцию, в результате которой будет сформулировано предложение, в котором должно быть в краткой и четкой форме изложено то, что единственным образом характеризует данный предмет, явление и т.д. Существуют различные способы определения понятий. Прежде всего, различают явные и неявные способы. Ниже приведены способы определения понятий и примеры.

1. Через род и видовое отличие. Такое определение можно представить в виде следующей схемы:

Схема 1

 


Например, параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. Квадрат – это прямоугольник с равными сторонами.

2. Генетическое определение. Такое определение отличается от первого способа тем, что вместо видового отличия указывают способ получения объекта. Например, четное число – это число, которое делится на два; треугольник – это фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, их соединяющих.

3. Индуктивное определение объединяет следующие три пункта: 1) перечисляются элементарные объекты, принадлежащие объему определяемого понятия; 2) формулируются правила образования новых объектов из уже имеющихся и 3) утверждается, что других объектов, принадлежащих объему определяемого понятия, кроме тех, которые могут быть образованы в соответствии с первыми двумя пунктами определения, нет. Например, индуктивное определение числового выражения таково: 1) каждое число считают числовым выражением; 2) новые числовые выражения могут быть образованы из числовых выражений А и В, если соединить их знаками действий (операций) и 3) других числовых выражений, кроме тех, которые могут быть образованы в соответствии с первыми двумя пунктами определения, нет.

4. Контекстуальное определение. В нем содержание нового понятия раскрывается через отрывок текста, через контекст. Таким образом, например, нами было введено понятие «множество». Таким образом вводится понятие уравнения и его решения в начальной школе.

5. Остенсивное определение. Такое определение раскрывает содержание нового понятия путем показа (демонстрации) определяемого объекта. Например, таким образом определяются в начальной школе понятия числовых равенств и неравенств. Таким образом можно дать определение линейной функции: функция вида f (x) = kx + в, где k и в – числа, называется линейной функцией.

6. Определение-соглашение. Этим термином обозначаются такие определения, в которых раскрывается смысл новых обозначений, символов, не укладывающихся в рамках обычных, ранее известных случаев. Например, принято считать а 0 = 1. Вот еще одно известное определение: под произведением двух дробей и понимают дробь вида .

7. Перечисление объектов, входящих в объем понятия. Например, единицы, десятки, сотни составляют класс единиц; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – однозначные числа.

8. Аксиоматическое определение. Это неявное определение, так как оно прямо не называет класс объектов, который описывается с помощью аксиом. В математике существует аксиоматическое определение целого неотрицательного числа, аксиоматическое определение величины и др.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 3408 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2151 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.