Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Первый закон Ньютона. Масса. Сила




Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исклю­чительную роль в механике и являются (как и все физические законы) обобщени­ем результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной про­верке подвергают не каждый отдельный закон, а всю систему в целом.

Первый закон Ньютона:всякая мате­риальная точка (тело) сохраняет состоя­ние покоя или равномерного прямолиней­ного движения до тех пор, пока воздейст­вие со стороны других тел не заставит ее изменить это состояние.

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. По­этому первый закон Ньютона называют также законом инерции.

Механическое движение относительно, и его характер зависит от системы отсче­та. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами от­счета. Инерциальной системой отсчета яв­ляется такая система, которая либо по­коится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведены в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловлен­ные ее неинерциальностью (Земля враща­ется вокруг собственной оси и вокруг Со­лнца), при решении многих задач прене­брежимо малы, и в этих случаях ее можно считать инерциальной.

Из опыта известно, что при одинако­вых воздействиях различные тела неоди­наково изменяют скорость своего движе­ния, т. е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его мас­сы).

Масса тела - физическая величина, являющаяся одной из основных характе­ристик материи, определяющая ее инерци­онные (инертная масса) и гравитацион­ные (гравитационная масса)свойства. В настоящее время можно считать дока­занным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10-12 их значения).

Для описания воздействия одного тела на другое вводится понятие силы. Сила – это векторная величина, которая является мерой воздействия на тело других тел или полей, в результате которого тело приобретают ускорения или изменяют форму и размеры (т.е. деформируется). Обозначается сила буквой .

 

2.2. Основной за­кон динамики поступательного движе­ния.

Основной за­кон динамики поступательного движе­ния отвечает на вопрос, как изменяет­ся механическое движение материальной точки (тела) под действием приложен­ных к ней сил.

Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всег­да прямо пропорционально равнодейст­вующей приложенных сил:

a ~ F (m = const). (2.1)

При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно:

a ~ 1 /m (F = const). (2.2)

Используя выражения (2.1) и (2.2) и учи­тывая, что сила и ускорение — величины векторные, можем записать

. (2.3)

Соотношение (2.3) выражает второй закон Ньютона:ускорение, приобретаемое материальной точкой (телом), пропорцио­нально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точ­ки (тела).

В СИ коэффициент пропорциональности k = 1. Тогда

,

или

. (2.4)

Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (2.4) ее можно внести под знак производной:

. (2.5)

При переменной массе из (2.5) имеем

. (2.5')

Векторная величина

, (2.6)

численно равная произведению массы ма­териальной точки на ее скорость и име­ющая направление скорости, называется импульсом (количеством движения) этой материальной точки.

Подставляя (2.6) в (2.5), получим

. (2.7)

Эта формула выражает основной за­кон динамики поступательного движе­ния:скорость изменения импульса материальной точки равна действующей на нее силе.

Единица силы в СИ - Ньютон (Н):1 Н - сила, которая массе в 1 кг сообща­ет ускорение 1 м/с2 в направлении дейст­вия силы:

1 Н = 1 кг·м/с2.

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае ра­венства нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (2.3)) также равно нулю. Однако первый закон Ньюто­на рассматривается как самостоятельный закон (а не как следствие второго зако­на), так как именно он утверждает существование инерциальных систем отсче­та, в которых только и выполняется урав­нение (2.7).

В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одно­временно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускоре­ния можно разлагать на составляющие, использование которых приводит к су­щественному упрощению решения задач. Например, на рис. 2.1 действующая сила разложена на два компонента: тангенциальную силу (направлена по касательной к траектории) и нормальную силу (направлена по нормали к центру кривизны). Используя выражения аτ = и an = , а также υ= Rω, можно записать:

Fτ = mа τ = m , (2.8)

Fn = man = 2/ R = 2 R. (2.9)

Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под во втором законе Ньютона понимают результирующую силу: .


Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие мате­риальных точек (тел) друг на друга носит характер взаимодействия силы, с которы­ми действуют друг на друга материальные точки, всегда равны по модулю, противо­положно направлены и действуют вдоль прямой, соединяющей эти точки:

, (2.10)

где - сила, действующая на первую материальную точку со стороны второй; - сила, действующая на вторую мате­риальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

Третий закон Ньютона позволяет осу­ществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

 

Силы в механике

Обсуждая до сих пор силы, мы не интере­совались их происхождением. Однако в механике мы будем рассматривать раз­личные силы: трения, упругости, тяготе­ния.

а) Силы трения. Из опыта известно, что всякое тело, движущееся по горизонтальной поверхно­сти другого тела, при отсутствии действия на него других сил с течением времени замедляет свое движение и в конце концов останавливается. Это можно объяснить существованием силы трения, которая препятствует скольжению соприкасаю­щихся тел друг относительно друга. Различают внешнее (сухое) и внутрен­нее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающих­ся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если же происходит относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения, качения или верчения.

Обсудим некоторые закономерности внешнего трения. Это трение обусловлено шероховатостью соприкасающихся повер­хностей; в случае же очень гладких по­верхностей трение обусловлено силами межмолекулярного притяжения.

Рассмотрим лежащее на плоскости те­ло (рис. 2.2), к которому приложена горизонтальная сила . Тело придет в движе­ние лишь тогда, когда приложенная сила будет больше силы трения . Француз­ские физики Г. Амонтон и Ш. Кулон опытным путем установили следующий закон: сила трения скольжения Fтр пропорциональна силе FN нормального давления, с которой одно тело действует на другое:

Fтр = μ FN, (2.11)

где μ - коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

Для гладких поверхностей определенную роль играет межмолекулярное притяжение. В этом случае закон трения скольжения имеет вид

Fтр = μист (FN +Sp 0),

где p 0- добавочное давление, обус­ловленное силами межмолекулярного при­тяжения, которые быстро уменьшаются с увеличением расстояния между частица­ми; S - площадь контакта между телами; μист - истинный коэффициент трения скольжения.

Трение играет большую роль в при­роде и технике. Благодаря трению движет­ся транспорт, удерживается забитый в стену гвоздь и т. д.

В некоторых случаях силы трения ока­зывают вредное действие, и поэтому их надо уменьшать. Для этого на трущиеся поверхности наносят смазку (сила трения уменьшается примерно в 10 раз), которая заполняет неровности между этими повер­хностями и располагается тонким слоем между ними так, что поверхности как бы перестают касаться друг друга, а скользят друг относительно друга отдельные слои жидкости. Таким образом, внешнее трение твердых тел заменяется значительно мень­шим внутренним трением жидкости.

Радикальным способом уменьшения силы трения является замена трения скольжения трением качения (шариковые и роликовые подшипники и т.д.).

б) Упругие силы. Под действием внешних сил возникают деформации (т. е. изменения размеров и формы) тел. Если после прекращения действия внешних сил восстанав­ливаются прежние форма и размеры тела, то дефор­мация называется упругой. Деформация имеет упругий характер в случае, если внешняя сила не превосходит определенного значения, которое назы­вается пределом упругости. При превышении этого предела деформация становится пластиче­ской. В этом случае после устранения внешних сил первоначальные форма и размеры тела полностью не восстанавливаются. В дальнейшем мы будем рассматривать только упругие деформации.

В деформированном теле возникают упругие силы, которые уравновешивают внешние силы, вызвавшие деформацию. Поясним это на примере деформации пружины. Под действием внешней силы пружина получает удлинение х, в результате чего в ней возникает упругая сила , уравновешивающая силу .

Упругие силы возникают во всей деформированной пружине. Любая часть пружины действует на другую часть с силой, равной .

Установленный экспериментально закон Гука утверждает, что при упругой деформации удлинение пружины пропорционально внешней силе. Аналитически эту закономерность принято записывать следующим образом:

.

Величина k называется жест­костью пружины. Из этого выражения следует, что чем больше k, тем меньшее удлинение получает пружина под действием данной силы.

Упругая сила отличается от внешней только знаком. Поэтому Fупр,x = - Fвнеш,x и, следовательно,

.

Опустим для краткости индекс «упр» и напишем это соотношение в виде
Fx = - kx, (2.12)

где Fx - проекция упругой силы на ось х, k - жест­кость пружины, х - удлинение пружины.

в) Силы тяжести и всемирного тяготения. И. Ньютон, изучая дви­жение небесных тел, на основании законов Кеплера и основных законов динамики открыл всеобщий закон всемирного тя­готения: между любыми двумя материаль­ными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m 1 и m 2) и обратно пропорциональная квадрату расстояния между ними (r 2):

F = G m 1 m 2 /r 2. (2.13)

Эта сила называется гравитационной (или силой всемирного тяготения). Силы тяго­тения всегда являются силами притяже­ния и направлены вдоль прямой, проходя­щей через взаимодействующие тела. Ко­эффициент пропорциональности G на­зывается гравитационной постоянной.

Закон всемирного тяготения установ­лен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры кото­рых малы по сравнению с расстоянием между ними. Если же размеры взаимодей­ствующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать силы притяжения между всеми попарно взятыми элементами, а затем гео­метрически их сложить (проинтегрировать), что является довольно сложной ма­тематической задачей.

На любое тело, расположенное вблизи Земли, действует сила тяготения F, под влиянием которой, согласно второму за­кону Ньютона, тело начнет двигаться с ускорением свободного падения g. Та­ким образом, в системе отсчета, связанной с Землей, на всякое тело массой m дей­ствует сила

, (2.14)

называемая силой тяжести.

Согласно фундаментальному физиче­скому закону - обобщенному закону Га­лилея, все тела в одном и том же поле тяготения падают с одинаковым ускорени­ем. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила гравитационного тяготения равны между собой:

FТ = mg = G mM /R 2, (2.15)

где М - масса Земли; R - расстояние между телом и центром Земли. Эта форму­ла дана для случая, когда тело находилось вблизи поверхности Земли.

Если тело расположено на высоте h от поверхности Земли, R 0 - радиус Зем­ли, тогда

FТ = G mM / (R 0 + h)2, (2.16)

т. е. сила тяжести с удалением от повер­хности Земли уменьшается.

В физике применяется также понятие веса тела. Весом тела называют силу, с которой тело вследствие тяготения к Земле действует на опору (или подвес), удерживающую тело от свободного паде­ния. Вес тела проявляется только в том случае, если тело движется с ускорением, отличным от , т. е. когда на тело кроме силы тяжести действуют другие силы. Со­стояние тела, при котором оно движется только под действием силы тяжести, на­зывается состоянием невесомости.

Таким образом, сила тяжести действует всегда, а вес появляется только в том случае, когда на тело кроме силы тяжести действуют еще другие силы, вследствие чего тело движется с ускорением , отлич­ным от . Если тело движется в поле тяготения Земли с ускорением ,то к этому телу приложена дополнительная сила , удовлетворяющая условию

.

Тогда вес тела
, (2.17)

т. е. если тело покоится или движется прямолинейно и равномерно, то = 0 и . Если тело свободно дви­жется в поле тяготения по любой траекто­рии и в любом направлении, то = и = 0, т. е. тело будет невесомым. Например, невесомыми являются тела, находящиеся в космических кораблях, сво­бодно движущихся в космосе.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 891 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2298 - | 2047 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.