Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Угловая скорость и угловое ускорение




Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.1.6). Ее положение через промежуток времени Δ t зададим углом Δ . Элементарные (бесконечно малые) углы поворота рассматривают как векторы.

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда отдельные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис.1.6). Ее положение через промежуток времени Δ t зададим углом Δ . Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого винта (рис.1.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или акси­альными векторами. Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени:

.

Вектор направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор (рис.1.7). Размерность угловой скорости - радиан в секунду (рад/с).

Линейная скорость точки (см. рис.1.6)

υ = ωR.

В векторном виде формулу для линей­ной скорости можно написать как вектор­ное произведение:

.

Если ω = const, то вращение равномер­ное и его можно характеризовать перио­дом вращения T - временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2π. Так как промежутку времени Δ t = T соответствует Δ φ = 2 π, то ω = 2 π/T откуда

T = 2 π/ω.

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

n = 1 /T = ω/ (2 π),

откуда ω = 2 πn.

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени:

.

Размерность углового ускорения - радиан за секунду в квадрате (рад/с2). При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор сонаправлен вектору , при замедленном - противонаправлен ему.

Тангенциальная составляющая ускорения aτ = , = ωR и

aτ = R = Rε.

Нормальная составляющая ускорения

an = = ω 2 R.

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость u, тангенциальное ускорение aτ, нор­мальное ускорение an)и угловыми величи­нами (угол поворота φ, угловая скорость ω, угловое ускорение ε) выражается сле­дующими формулами:

s = Rφ, u= Rω, aτ = Rε, an = ω 2 R.

В случае равнопеременного движения точки по окружности (ε = const)

ω = ω 0 εt, φ = ω 0 t εt 2 / 2,

где ω 0- начальная угловая скорость.
ГЛАВА 2. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 458 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2389 - | 2156 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.