Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задача о раскрое материалов




На раскрой (распил, обработку) поступает материал одного образца в количестве A единиц. Требуется изготовить из него m разных комплектующих изделий в количествах, пропорциональных числам bi (i = 1,…, m) – условие комплектности.

Каждая единица материала может быть раскроена n различными способами, причем использование j-го способа (j = 1,…, n) дает aij единиц i-го изделия (i = 1,…, m).

Необходимо найти план раскроя, обеспечивающее максимальное количество комплектов.

Обозначим xj – число единиц материала, раскраиваемых j-ым способом,

x – число изготавливаемых комплектов изделий.

Так как общее количество материала равно сумме его единиц, раскраиваемых различными способами, то xj = A.

Требование комплектности выразится уравнениями

xjּaij = biּx (i = 1,…, m)

Кроме того xj ≥ 0 (j = 1,…, n).

Практический блок

Пример

Составить математическую модель задачи линейного программирования и найти решение геометрическим способом.

1. По данным, приведенным в таблице 2.2.3 составить систему математических зависимостей (неравенств) и целевую функцию.

2. Изобразить геометрическую интерпретацию задачи и найти оптимальное решение.

3. Провести аналитическую проверку и определить значение целевой функции.

4. Определить избытки ресурсов.

5. Вычислить объективно обусловленные оценки.

6. Исследовать устойчивость решения.

Таблица 2.2.3 – Матрица удельных нормативов.

Продукция Сырье Прибыль на одно изделие
Рес. 1 Рес. 2 Рес. 3
I. Изделие 1 2.4 8.0 6.2 50 ()
II. Изделие 2 12.2 5.4 2.2 40 ()
Наличие ресурсов      

Решение:

1. Обозначим:

– объем изделия 1;

– объем изделия 2.

Опишем модель с помощью системы неравенств линейных уравнений:

;

;

;

;

– целевая функция (критерий оптимальности).





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 870 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2450 - | 2243 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.