Пример решения задачи. На заданную балку с высоты Н=0,5м свободно падает абсолютно жесткое тело массой m
Лекции.Орг

Поиск:


Пример решения задачи. На заданную балку с высоты Н=0,5м свободно падает абсолютно жесткое тело массой m




Задача

На заданную балку с высоты Н=0,5м свободно падает абсолютно жесткое тело массой m. Поперечное сечение балки составное – состоит из четырех стальных равнобоких уголков №10, сваренных между собой. Определить допустимую величину массы падающего тела , при которой будет обеспечена прочность балки, если . Проверить выполнение условия жесткости, приняв . Массой балки пренебречь.

Решение

1. Определим геометрические характеристики поперечного сечения балки: осевой момент инерции Ix и осевой момент сопротивления Wx, которые нам потребуются при прочностном и деформационном расчетах.

Поперечное сечение балки сложное – состоит из четырех равнобоких уголков №10:

Оси х и у – главные центральные оси сечения, причем ось у – силовая линия, а ось х – нейтральная линия. По сортаменту (см. Приложение 4, таблица 4.3, стр. 154) для одного равнобокого уголка №10 находим: сторону уголка , момент инерции относительно оси , площадь , расстояние от центра тяжести до стороны уголка .

Применяя теорему о суммировании моментов инерции и теорему о параллельном переносе осей (см. Практикум, часть 1, стр. 27-29) найдем осевой момент инерции всего сложного сечения:

Осевой момент сопротивления Wx находим по определению (см. Практикум, часть 1, стр. 34):

.

2. Решим статическую прочностную часть задачи.

2.1. Приложим к балке в точке удара «U» (в направлении удара) статическую силу, равную весу падающего тела: . При этом в подвижной опоре «В» возникает реактивная сила , которая определяется из моментного уравнения равновесия, записанного относительно врезанного шарнира «С» для правой части балки:

.

2.2. Построим грузовую эпюру изгибающих моментов от действия силы F и определим положение опасного сечения балки. Эпюру строим в направлении от свободного края к жесткой заделке методом сечений с учетом действия силы F и реакции .

Опасное сечение балки – сечение «D», где возникает максимальный момент .

2.3. Определим максимальное статическое напряжение в долях массы m. Примем при этом ускорение свободного падения .

.

3. Определим коэффициент динамичности по формуле (8.2). Для этого нам нужно знать податливость упругой системы .

3.1. Для определения податливости системы построим единичную эпюру изгибающих моментов от действия единичной силы, приложенной в точке удара «U». Очевидно, что эпюра будет отличаться от грузовой эпюры лишь тем, что значения моментов в соответствующих сечениях будут в mg раз меньше.

3.2. Определим податливость упругой балки методом Мора, «умножив» единичную эпюру саму на себя. Будем использовать при этом формулу Симпсона. Участков перемножения два: UB и ВD.

.

3.3. Найдем теперь коэффициент динамичности в долях параметра m, используя формулу (8.2).

.

4. Запишем условие прочности при ударе (8.3):

.

5. Подставим в условие прочности значение и выражения для и в долях параметра m:

.

Если в неравенстве оставить только знак равенства, то значение параметра массы m будет максимально допустимым . Решим полученное таким образом уравнение относительно .

.

Таким образом, чтобы не нарушилось условие прочности, на балку с высоты Н=0,5м может упасть тело массой, не более 34,4кг. Численное значение коэффициента динамичности при этом равно

.

6. Решим статическую деформационную часть задачи.

6.1. Определим, в каком сечении балки возникает максимальный статический прогиб . Для этого изобразим приближенный вид изогнутой оси балки, учитывая условия её закрепления и вид грузовой эпюры изгибающих моментов (подробные пояснения – см. тему 1, стр. 16).

Очевидно, что максимальное статическое перемещение возникает в сечении «К».

6.2. Определим методом Мора. Для этого необходимо в сечении «К» приложить единичную безразмерную силу и построить от её действия единичную эпюру изгибающих моментов .

«Умножив» единичную эпюру на грузовую , согласно методу Мора, получим искомое перемещение . Применяем при этом простейшую формулу Симпсона. Участков перемножения два: UB и ВD.

. (8.5)

Давайте подумаем , как проще можно посчитать эту величину. Выше мы уже отмечали и на рисунке видно, что грузовая эпюра пропорциональна единичной эпюре . Коэффициентом пропорциональности является величина . Тогда при вычислении по формуле (8.5) грузовую эпюру можно заменить на единичную эпюру , а коэффициент пропорциональности вынести за скобку:

.

Таким образом, при статическом нагружении балки максимальное статическое перемещение возникает в сечении «К» и равно 0,27мм.

7. Запишем условие жесткости при ударе и проверим его выполнение.

Условие жесткости при ударе имеет вид (8.4):

.

Подставим в него значение , найденные значения и и проверим его выполнение.

> ,

следовательно, условие жесткости не выполняется.

Задача решена.





Дата добавления: 2015-01-29; просмотров: 1005 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.005 с.