Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Случай косого изгиба




Что такое косой изгиб?

Косым изгибом называется такой вид деформации, при котором силовая линия не совпадает ни с одной из главных центральных осей сечения.

Что такое силовая линия?

Силовая линия – это след плоскости действия изгибающего момента.

Что такое главные центральные оси сечения?

Это оси, проходящие через центр тяжести поперечного сечения, относительно которых центробежный момент инерции равен 0. Что-то опять сложно и не понятно! Ведь надо знать, что такое центробежный момент инерции ! В простых случаях поперечных сечений, если хотя бы одна из осей координат сечения является осью симметрии, а вторая проходит через центр тяжести, такая система координат всегда главная.

Почему необходимо знать об этом виде деформации и уметь делать расчеты на прочность?

Дело в том, что косой изгиб достаточно часто встречается в реальных конструкциях и опаснее прямого. Поэтому, если условия работы элемента конструкции приводят к возникновению именно косого изгиба, то абсолютно очевидно, что надо уметь корректно оценивать прочность, учитывая особенности данного вида деформации.

Чтобы научиться оценивать прочность в случае косого изгиба надо знать!

1. Косой изгиб можно представить как сумму двух прямых изгибов:

2. Напряжения при косом изгибе в любой произвольной точке поперечного сечения определяются как алгебраическая сумма нормальных напряжений от каждого изгибающего момента, создающего прямой изгиб:

,

Здесь х и у – координаты точки сечения, в которой определяют величину напряжения ; и – главные осевые моменты инерции поперечного сечения. Для заданной формы сечения формулы для них можно найти в справочнике.

3. Для определения положения опасных точек сечения надо знать положение нейтральной линии, которая не перпендикулярна силовой (в отличие от прямого изгиба) и проходит через четверти, противоположные тем, через которые проходит силовая линия. Точки сечения, наиболее удаленные от нейтральной линии – опасные точки. Для прямоугольного сечения и форм сечений на основе прямоугольника (двутавр, швеллер) – это всегда угловые точки, находящиеся в силовых четвертях. Т.е. в четвертях, через которые проходит силовая линия.

4. Определить положение опасных точек можно также, используя прием простановки знаков нормальных напряжений в четвертях сечения от каждого из прямых изгибов относительно осей х и у, из которых состоит косой изгиб. Опасные точки находятся в четвертях сечения с одинаковыми знаками напряжений и максимально удалены от нейтральной линии и главных центральных осей сечения.

5. Условие прочности для косого изгиба:

.

6. Для элементов конструкций с симметричными формами профилей, изготовленных из пластичных материалов, можно использовать «зеркальную» формулу:

.


Алгоритм расчета на прочность при косом изгибе

1. Определение положения опасного сечения на элементе конструкции по эпюрам внутренних моментов и Му, построенных от действия внешних нагрузок.

2. Определение положения силовой линии в опасном сечении. Для этого необходимо в плоскости сечения по осям х и у отложить в масштабе ординаты внутренних моментов (Мх по оси у, а Му по оси х) в сторону, соответствующую положению ординат на эпюрах изгибающих моментов в опасном сечении. Ордината суммарного момента, построенная как геометрическая сумма ординат моментов Мх и Мy, определяет положение силовой линии.

3. Определение положения опасных точек в опасном сечении. Для сечения прямоугольной формы и подобной ему (двутавр, швеллер), опасные точки – это угловые точки в силовых четвертях. Они равноопасны, т.к. находятся на одинаковых расстояниях от главных центральных осей сечения.

4. Запись условия прочности для опасных точек и его решение согласно поставленной задаче:

.

Для прямоугольного сечения можно воспользоваться «зеркальной» формулой для определения нормальных напряжений от каждого изгибающего момента, создающего прямой изгиб:

,

где и – моменты сопротивления поперечного сечения относительно соответствующих главных центральных осей.

 





Поделиться с друзьями:


Дата добавления: 2015-01-29; Мы поможем в написании ваших работ!; просмотров: 3170 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2517 - | 2171 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.