Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Необходимое и достаточное условие непрерывности функции в точке




Функция y = f (x) непрерывна в точке х0 тогда и только тогда, когда

 
lim
Δ x → 0

Δ y = 0.

(2)

Замечание. Условие (2) можно трактовать как второе определение непрерывности функции в точке. Оба определения эквивалентны.

Пусть функция f (x) определена в полуинтервале [ x 0, x 0 + δ).

Функция f (x) называется непрерывной справа в точке x 0, если существует односторонний предел

 
lim
xx 0 + 0

f (x) = f (x 0).

 

Пусть функция f (x) определена в полуинтервале (x 0δ, x 0].

Функция f (x) называется непрерывной слева в точке x 0, если существует односторонний предел

 
lim
xx 0 − 0

f (x) = f (x 0).

 

 

2) Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.

 
Непрерывна при x = a.   Имеет разрыв при x = a.
 
Непрерывна при x = a.   Имеет разрыв при x = a.
Рисунок 1.




Поделиться с друзьями:


Дата добавления: 2015-08-18; Мы поможем в написании ваших работ!; просмотров: 1622 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2644 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.