Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Химическая форма материи




Химическая форма материи (ХФМ)[78] включает уровни от атома до макромолекулярных комплексов, лежащих в преддверии живой ма­терии. В современной науке выделение химического как одной из ос­новных форм материи, ступени единого мирового процесса связано с большими теоретическими трудностями, преодоление которых воз­можно только совместными усилиями теоретической химии и философии. В условиях современной научно-технической революции грани между основными формами бытия становятся чрезвычайно подвиж­ными и самостоятельное существование фундаментальных наук может быть установлено только с помощью глубокого философского анали­за, т. е. с использованием форм мысли, которые выходят далеко за рамки частнонаучного мышления.

Известно, что современная химия стала зрелой наукой, когда она получила хорошо разработанный физический фундамент, прежде всего — квантовую теорию химической связи. Процесс проникнове­ния понятий и методов физики в химию привел к появлению редукционизма — современной формы механицизма, заключающейся в по­пытке полного сведения химического к физическому, растворения хи­мического качества в физическом, или, иначе, физикализму. Эта по­пытка является частным случаем редукционизма вообще, выражающе­гося также в тенденции сведения биологического к химическому, со­циального к биологическому и, в конечном счете — всех высших форм материи к физической (радикальный физикализм). С позиций радикального физикализма все формы материи являются лишь различ­ными модификациями физической реальности.

Физикализм и редукционизм имеют некоторые основания, чрез­мерно преувеличиваемые и абсолютизируемые. Как известно, химиче­ская форма материи “строится” из физической. Химический атом син­тезирован из протонов, нейтронов и электронов. Химическое, как и любая другая форма материи (мы будем рассматривать эту закономер­ность позднее), возникает на основе предыдущей и включает часть ее в себя, в качестве своей “основы” или “фундамента”. Поэтому каждый элемент или “шаг” химической формы материи имеет свой физичес­кий “эквивалент”. Каждый химический атом выступает также как уни­кальное физическое образование и может быть описан как физическая индивидуальность. В тенденции физика должна под своим углом зре­ния объяснить все химические феномены и связи. “...Вся система хи­мических элементов во всем ее широком многообразии в настоящее время в принципе может быть выведена из законов физики”[79].

Однако совершенно бесспорно, что от физического описания и объяснения ускользает собственно химическое качество и, тем более, качества жизни и социальной жизни. Проблема “неуловимого химиче­ского качества” разрешима только на основе целостного подхода к миру, взгляда на мир как единый закономерный процесс, в котором химическая форма материи занимает свое закономерное место и мо­жет быть понята в сопоставлении с другими формами материи.

Обычно химическое качество связывается химиками с атомами как неделимыми химическими целостностями. Известный специалист в области философских вопросов химии Б.М. Кедров определял атом как “исходную химическую клеточку”, своего рода химическую еди­ницу и рассматривал целостность атома как основной аргумент в по­льзу несводимости химического к физическому[80]. Однако этот аргу­мент, действительно свидетельствуя в пользу существования химичес­кого качества, обнаруживает в то же время свою существенную недо­статочность, поскольку с точки зрения квантовой механики атом явля­ется и физической целостностью, на основе которой возникает хими­ческая целостность. Поэтому в некоторой степени схваченное, хими­ческое качество все же от нас ускользает. В определении химического качества мы несколько продвинемся дальше, если учтем, что физичес­кая целостность атома является целостностью физического многообра­зия - ядра и электронов, которые остаются всецело физическими обра­зованиями, а химическая целостность — слитно и неделима.

В пользу специфического и несводимого химического качества говорит, далее, тот факт, что ни одна фундаментальная химическая проблема — химической связи, реакционной способности, валентно­сти и т.д. не получила своего решения в квантовой химии, которая, не­смотря на ее огромную роль в химии, не способна объяснить, что в хи­мическом есть собственно химическое. Как отмечает Г. Фукс, предмет химии может быть адекватно понят только химией[81]. “...Никакие физи­ческие методы сами по себе, — утверждает М.В. Волькенштейн, — не были бы в состоянии установить структуру сложных молекул без хи­мических исследований”[82].

Сильным аргументом в пользу качественного своеобразия хи­мической реальности является ссылка на основной химический пери­одический закон, открытый Д. И. Менделеевым. Химическую реаль­ность поэтому нередко определяют как “менделеевский мир”. Однако и эта ссылка не дает окончательного решения вопроса о специфичес­ком химическом качестве.

Существенным свидетельством в пользу своеобразной химичес­кой реальности является тот факт, что химические связи между качес­твенно различными атомами в физическом отношении различаются только количественно. Так, связь Н-С отличается от связи H-F с физи­ческой стороны лишь различной полярностью или разностью электроотрицательности атомов (0,4 и 1,9). С химической же стороны — это связи водорода с качественно различными химическими элементами.

Наиболее крупным аргументом в пользу признания несводимо­го химического качества, своеобразной химической формы объектив­ной реальности является то, что химический мир — это над-массэнергеттеский мир, в котором слабые масс-энергетические процессы хо­тя и имеют место, образуя физическую основу химизма, но не опреде­ляют его природы. Как отмечает Э.Штрекер, “вещество и качество, как таковые, нигде не выступают в уравнениях физики. Вещество вы­ступает в них только в виде массы, а качество имеет значение лишь постольку, поскольку встречающиеся иногда в функциональных урав­нениях константы имеют для каждого вещества свои числовые значе­ния. Еще не было никакой возможности выразить вещественную при­роду в ее качественной специфичности в виде массы и числа”[83].

Химический мир, как подметил еще Гегель, характеризуется не­сравненно большим качественным многообразием, чем физический. Образуясь всего из трех основных элементарных частиц (причем час­тиц, обладающих наибольшим многообразием физических связей), хи­мическое включает свыше 100 химических элементов, из которых воз­никает огромное качественное многообразие химических соединений. В настоящее время идентифицировано порядка 8 миллионов химичес­ких соединений и ежегодно синтезируется до полумиллиона соедине­ний. А. Ленинджер полагает, что общее число возможных типов бел­ков составляет 1010-12, а нуклеиновых кислот— 1010.

Весьма существенной чертой химического мира является более заметное, чем в физическом мире, развитие особенного. В отличие от ядер и электронов химические соединения обладают ярко выраженной индивидуальностью. Д. И. Менделеев подчеркивал, что химический мир — “это целый живой мир с бесконечным разнообразием индиви­дуальностей как в самих элементах, так и в их сочетаниях”[84]. Масс-энергетические взаимодействия в химии характеризуются значительно меньшей индивидуальностью, чем над-массэнергетические. Послед­ние связаны прежде всего с одним из важнейших свойств химических веществ — химическом сродством.

Химический способ развития. Качественно более сложный хи­мический субстрат обладает новым, отличным от физического, спосо­бом развития.

Химические элементы составляют низший, наиболее простой и исходный уровень химической эволюции. Они возникают в результате предшествующего физического процесса эволюции, обладают неоди­наковой физической и химической сложностью и, следовательно, раз­личными возможностями дальнейшего химического процесса разви­тия, различным потенциалом развития. Т.С. Васильева установила за­мечательную особенность разнородного усложнения физических и хи­мических атомов в ходе роста их порядкового номера в системе Мен­делеева. Если в физическом отношении химические элементы, начи­ная с водорода, усложняются сравнительно однородно и линейно, так что уран и следующие за ним элементы оказываются безусловно более сложными, чем предшествующие, то химически элементы усложняют­ся нелинейно. Первоначально их химическая сложность быстро растет, достигая максимума у углерода, а затем резко падает. Уран в физичес­ком отношении сложнее, а в химическом — значительно проще, чем углерод. Последний — наиболее сложный химический элемент, обла­дающий наивысшим потенциалом химического развития. В той или иной мере близкими углероду эволюционными потенциалами облада­ют водород, кислород, азот, сера и фосфор. В силу этого углерод, во­дород, кислород и другие химические элементы играют главную роль в химической эволюции, закономерно приводящей к появлению жиз­ни, и называются поэтому элементами-органогенами. Менделеев пи­сал, что “ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде”[85].

В основе представления о химическом способе объективно-ре­ального существования и развития лежит понятие химической реак­ции. Претерпев большую эволюцию в истории науки, это понятие на­ходится в центре теоретических представлений современной химии. В понятии реакции химический способ объективно-реального существо­вания и развития определен применительно к отдельным превращени­ям. Химическая реакция — относительно самостоятельное превраще­ние, связанное с некоторым конечным числом реагирующих субстра­тов. На уровне понятия реакции не раскрывается целостная природа и направленность объективно-реального существования и развития ХФМ. Это делает необходимым перейти к более обобщенным и широ­ким понятиям.

Химический процесс есть единство синтеза (ассоциации) и распада (диссоциации). Поскольку химический синтез приводит к усложнению веществ, он является химической формой прогресса, а диссоциация — химическим проявлением регресса. Если химический способ развития рассматривать только на уровне отдельных реакций, то может возникнуть представление о равенстве, равносильности про­цессов синтеза и распада. Однако более глубокий, целостный (системный) подход к совокупному миру химических превращений дает осно­вания для вывода, что общим интегральным направлением химичес­ких превращений является прямой субстратный синтез. Коренная особенность такого синтеза состоит в том, что переход в новое, выс­шее качество, новую сущность не может быть осуществлен отдель­ным самостоятельно существующим субстратом. Для такого перехода отдельный химический субстрат нуждается в другом субстрате. В хи­мическом развитии новое качество, новая сущность выступают как па­ритетный результат двух или более химических субстратов.

Отдельный самостоятельно существующий субстрат (химичес­кий атом или молекула) не обладает, следовательно, достаточным бо­гатством внутреннего содержания (содержания “в себе”) и нуждается в существенном дополнении другим. На уровне химической формы материи отдельный субстрат характеризуется существенной внутрен­ней неполнотой, т. е. недостаточным для самостоятельного развития содержанием.

Субстратный синтез выступает в качестве общего для физичес­кой и химической форм материи способа объективно-реального суще­ствования и развития, однако он обладает в них своей существенной спецификой. Химический субстратный синтез — прежде всего над-массэнергетический синтез, хотя он и происходит с помощью физи­ческого (электромагнитного) синтеза, связанного с изменением вне­шней электронной оболочки атомов. В отличие от “суммарного” и “массового” характера физического синтеза (в особенности наиболее универсального — гравитационного), химический синтез имеет высо­коизбирательный характер, ибо происходит по законам химического сродства. Благодаря сродству, проявляемому качественно различными элементами друг к другу, химический синтез есть не просто притяже­ние субстратов, но их взаимное изменение с потерей ряда прежних и приобретением новых общих свойств. Это синтез избирательно вза­имодействующих качеств.

Химический субстратный синтез включает особый, специфиче­ски химический механизм — катализ, т. е. способность ускорения хи­мических превращений. В химической форме материи, таким образом, возникает своеобразная способность многократного самоускорения движения и развития.

Химический субстратный синтез — высшая и предельная фор­ма субстратного синтеза в природе. Как способ развития, субстратный синтез связан с относительно простыми субстратами и с определенно­го уровня сложности становится невозможным. Это объясняется уже тем, что более сложные субстраты обладают большой автономностью и не могут объединяться.

Имеет ли развитие направление

Закономерный характер химической эволюции. В развитии ХФМ можно выделить целый ряд направлений[86]. Общим направ­лением всех линий развития является движение от низшего к высше­му, от простого к сложному: от химических элементов к молекулам и их комплексам. В пределах общего направления можно выделить ма­гистральное, т. е. основное направление, с которым

связано наиболь­шее богатство, многообразие химических превращений, и побочные, или тупиковые, ветви развития.

Магистральное направление развития ХФМ связано с углеро­дом как наиболее сложным и богатым химическим элементом, и дру­гими элементами-органогенами — Н, О, N, S, Ph.

Тупиковые ветви развития существуют благодаря магистрали химической эволюции, поскольку они представляют собой ответвле­ния от нее. В то же время тупиковые направления обусловливают раз­витие на магистральной линии, создают необходимые для химической эволюции условия. В конечном счете химическая эволюция законо­мерно приводит к возникновению живой материи.

Что определяет направленность химической эволюции от про­стого к сложному, к возникновению живого? По этому ключевому во­просу в естественнонаучной и философской литературе существуют две основные точки зрения. Одни ученые (А.И. Опарин, Дж. Бернал, В.И. Кузнецов) считают, что фактором, определяющим развитие хими­ческого в сторону живого, является химический отбор, который дает оценку развивающихся химических систем относительно среды. В процессе отбора таких химических систем сохраняются и продолжают эволюционировать все более сложные системы. “Выживаемость” хи­мических систем обусловлена усложняющимся химическим содержа­нием систем. Согласно второй точке зрения направленность химичес­кой эволюции определяется внутренними ограничениями, вытекающи­ми из свойств химических элементов и их соединений. Не среда со­вершенствует химическое, а химическое совершенствует само себя при сопоставлении со средой (посредством химического отбора наи­более устойчивых систем). Активным фактором отбора оказывается, с этой точки зрения, само химическое, “отбор есть самоотбор “под углом зрения” соответствия среде”[87]. Фактически к этой точке зрения подходил и А.И. Опарин, который подчеркивал способность химичес­кой материи к саморазвитию.

Вторая точка зрения в различных вариантах обосновывается Д. Кеньоном[88] и А П. Руденко. С позиций концепции “биохимического предопределения” Д. Кеньона каждая ступень химической эволюции в основных чертах предопределена свойствами химических соединений предшествующей ступени химической эволюции и не является случай­ной по отношению к последней.

В разработанной А.П. Руденко теории саморазвития открытых каталитических систем[89] объектом химической эволюции рассматрива­ется не молекула, а каталитическая система, включающая взаимо­действующие молекулы, катализаторы и химическую среду Основ­ным показателем развития каталитической системы является абсолют­ная каталитическая активность, рост которой служит основой эволю­ционных изменений каталитической системы, ее усложнения, которое происходит с нарастающей вероятностью.

В конкретном химическом аспекте процесс эволюции химичес­кой материи и возникновение живой материи описан теорией А.И. Опарина, считающейся наиболее вероятной гипотетической теорией происхождения жизни[90]. Согласно этой гипотезе предбиологическая эволюция прошла несколько основных ступеней — органических ве­ществ (начиная с простейших соединений углерода СН, CN, СО) — высокомолекулярных полимеров (прежде всего первичных белков и простейших нуклеиновых кислот) — индивидуальных многомолеку­лярных систем, в результате направленной эволюции которых возни­кали первичные примитивные организмы.

В процессе химической эволюции обнаруживается глубинная, внутренняя логика развития, которая скрыта под частностями и “дета­лями” химического процесса и может быть выявлена только совмест­ными усилиями теоретической химии и философской науки. Как уже отмечалось, способом химического существования и развития являет­ся прямой субстратный синтез. Его основным внутренним противоре­чием является противоречие между субстратным синтезом как целост­ным процессом и включенным в него процессом химической диссоци­ации, или распада.

Диалектический “смысл” субстратного синтеза заключается в том, что химические вещества по отдельности не обладают достаточ­ным для саморазвития содержанием и поэтому химическая эволюция может осуществляться только посредством синтеза этих веществ. Преобладание, или абсолютность, химического синтеза ярко выражено уже на исходном уровне химической эволюции — в химических эле­ментах, основной тенденцией которых является тенденция к синтезу, а не распаду, что предопределено уже физической структурой элемен­тов — стабильностью атомного ядра и способностью электронных оболочек к электромагнитным взаимодействиям. Выражаясь гегелевс­ким языком, химические элементы и их соединения “определены к синтезу”.

Однако “паритетность” химических синтезов является относи­тельной, ибо химические элементы неравноценны по своему химичес­кому содержанию и, следовательно, эволюционному потенциалу. По­скольку наиболее богатым химическим элементом является углерод, с ним связано магистральное направление химической эволюции. Ато­мы углерода образуют так называемую полипептидную связь, после­довательность сотен тысяч атомов углерода, к которой могут присо­единяться любые другие химические атомы и их группы. Химическая эволюция приводит к появлению такого химического субстрата, кото­рый получает все более богатое химическое содержание и становится основой химической эволюции, приобретает автономность и устойчи­вость Субстратный синтез теряет при этом свой прежний “паритет­ный” характер, постепенно исчерпывает себя, а развивающийся хими­ческий субстрат становится все более способным к самостоятельной эволюции, к саморазвитию. Важнейшим свойством такого субстрата оказывается самосохранение, которое осуществляется благодаря тому, что химическая диссоциация превращается в средство поддержания синтеза, поддержания целостности автономного субстрата. Когда хи­мический процесс оказывается таким образом “замкнутым на самого себя”, т.е. становится средством поддержания целостности материаль­ной системы, химический субстрат превращается в живую материю, а химический процесс становится жизненным процессом. По глубокому замечанию Ф. Энгельса, жизнь — это самосохраняющийся химичес­кий процесс Жизнь, таким образом, является закономерным и необхо­димым результатом химической эволюции природы.

В химической эволюции обнаруживается одна из важнейших закономерностей развития — аккумуляция содержания низших ступе­ней в высших. Химическая эволюция представляет собой не простую смену одного состояния другим, а накопление, синтез основных резу­льтатов развития в последующих ступенях, в результате чего возника­ет материальный субстрат, обладающий наибольшим многообразием самых различных и даже противоположных свойств. Так, белки, один из важнейших компонентов живой материи, обладают кислотными и основными, гидрофильными и гидрофобными свойствами, обнаружи­вают все основные типы реакций. В нуклеиновых кислотах — втором важнейшем компоненте живой материи — благодаря их особой струк­туре происходит накопление информационного содержания в сжатой, кодированной форме.

Возникновение жизни обусловлено прежде всего магистраль­ным направлением химической эволюции, где химическая форма ма­терии выступает в своем оптимальном, или достаточно полном, соде­ржании или многообразии. Учитывая это обстоятельство, большинс­тво крупнейших химиков мира считают, что жизнь не может возни­кнуть на какой-либо иной, кроме углеродной, основе, например, на ба­зе кремния или азота, которые обладают несравненно меньшим, чем углерод, многообразием химических связей и, следовательно, мень­шим потенциалом развития. “Все данные физико-химических исследо­ваний, — пишет А.И. Опарин, — говорят нам о том, что иных форм соединений, ведущих к развитию жизни, не может быть”[91]. По мнению В.Г. Фесенкова, “во Вселенной органическая жизнь, если она вообще существует, может быть построена только на основе углеводородных соединений”[92].

 





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1679 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2355 - | 2037 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.