, . , , , . . , . , , . , , , , , . , .
. 1.14.
, , , . , , , (.1.14). , , . . -
, , . .
T, f, x, A (.1.15).
T . f
. (1 = 1/), 1 .
:
f = 1. (1.5.1)
T
( /c)
w = 2 p f
= 2 p. (1.5.2)
T
(x = x (t)) . A . . 1.15.
. , , . , . -
. . ω0, , .
|
|
. (.1.16), , . (1.1.4)
d 2 x
a =
dt 2
= ˙ x ˙.
m ˙ x ˙ = - kx, (1.5.3)
m ,
Fx = - kx
-
, .
(1.5.3) :
˙ x ˙ +
kx = 0. (1.5.4)
m
. 1.16.
(1.5.4)
x = A cos(w 0 t + f), (1.5.5)
A , f .
, .
, (1.5.5)
..
(1.5.4)
m
= 0.
k
w 0=
. (1.5.7)
m
|
√m
m0 ~ √k. , .
:
mv 2
kx 2
kA 2
E =
+ u (x)= + =, (1.5.8)
2 2 2
v , m x ( ).
. . , . , , , . , , . , , .
. , .
(.1.17).
, , , ( ):
F = k v, (1.5.9)
k , [ k ] = /.
, , , (1.5.3)
ma = kx k v (1.5.10)
m ˙ x ˙ + k x ˙ + kx = 0. (1.5.11) , , :
|
|
- a t
x = Ae
cos w 0 t, (1.5.12)
α , 1, .
.1.17.
(1.5.12) : , .
a = k
2 m
. (1.5.13)
k k 2
w 0=
- . (1.5.14)
m 4 m 2
. , , . , , , . , , . . , . , , , , . , .
,
F = F 0cos ωt, (1.5.15)
(1.5.10) .
m ˙ x ˙ + k x ˙ + kx = F 0 cos wt. (1.5.16)
(1.5.16) :
x = A 0sin(wt + j 0), (1.5.17)
A 0=
m
F 0.
|
|
m 2
(1.5.18)
. , ( , ) , . , , . , -
, . . .
. - , . : , . (1.5.18) : , . . . ω 0 . .1.18 -
, ω 0= ω.
. . , , , .
. 1.18.
. , , -
,
|
|
. , , .
.
.
,
-
.
,
, .
:
, ω = 2 π/T.
,
-
-
,
,
:
,,,
, .
.1.19.
. .
-
,
(.1.20).
. , , , , .
, ,
. 6. -
, , , .
. ,
.
, -
, .
: , f, 1.5.
l = vT,
v = l f.
(1.6.1)
(1.6.2)
, , -
.
-
(.1.20, ). , : ,
|

. .
.1.20.
, . , , .. , ( ) , (.1.20, ). .
(.1.20, ). (.1.20, ).
|
|
. , x ( ), . , , ,
a = A sin 2 p (x - vt). (1.6.3)
0 l
,
a = A sin 2 p (x + vt), (1.6.4)
0 l
a x, v .
. . .
:
x
E = E+ E= mm2a2= mm2A2sin2 m (t ).
r
:
E=
mm2A2
=
q∆Vm2A2
=
qm2A2
∆V = s∆V,
rw 2 A 2
e = = ,
V 2
, .
, , . (1 = 1 /) , ,
dE
=. (1.6.5)
dt
, , , . I (1 /2= 1 / 2)
, ,
I= dE
. (1.6.6)
dtdS
I = Ä E = Ä t Ä S
Ä E v
Ä t Ä Sv
= e
v. (1.6.7)
s=
qm2Æ2
2, (1.6.8)
q , A , m .