Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


ВВЕДЕНИЕ. Тонкостенные стержни широко применяются в современных инженерных конструкциях различного назначения




Тонкостенные стержни широко применяются в современных инженерных конструкциях различного назначения. К таким конструкциям в строительстве относятся металлические прокатные, сварные или клепанные балки, колонны, отдельные элементы ферм и рам, некоторые типы мостов и трубопроводов. Широкое применение тонкостенных стержней вызвано стремлением к повышению экономичности конструкций. Кроме того, конструкции с использованием тонкостенных стержней позволяют при нормальном расходе материала для висячих мостов.

В связи с вышесказанным каждый инженер-строитель должен владеет методиками расчета тонкостенных стержней, в основе которых лежит теория расчета тонкостенных стержней открытого прогиба члена-корреспондента АН СССР проф. В.З. Власова.

Тонкостенным стержнем, в отличие от сплошного, массивного, называется такой стержень, поперечное сечение которого состоит из тонких полосок, причем ширина каждой такой полоски существенно превышает толщину, а длина стержня существенно превышает эти два размера.

Специфическая особенность тонкостенных стержней состоит в том, что эти стержни, как пространственные системы типа оболочек, могут при кручении испытывать деформации продольных удлинений, а следовательно, и пропорциональные этим деформациям продольные нормальные напряжения, приводящиеся в каждом поперечном сечении к системе самоуравновешенных продольных сил. Эти, не рассматриваемые при расчете стержней сплошного поперечного сечения дополнительные продольные нормальные напряжения, возникающие вследствие относительной депланации сечения, могут достигать весьма больших значений в тонкостенных стержнях открытого (жесткого или деформируемого) профиля, а также и в стержнях закрытого деформируемого профиля.

На рис.1 приведено поперечное сечение тонкостенного стержня, а на рис.2 – сечение сплошного стержня.

 

Рис.1 Рис.2

Строго разграничить стержень тонкостенный от стержня сплошного нельзя, однако: можно считать, что если длина элементов сечения в восемь и более раз превышает их толщину, то к стержню в большей мере применима теория тонкостенных стерж­ней, чей теория расчета стержней сплошных. При этом следует иметь в виду, что одна и та же конструкция, в зависимости от условий ее работы под внешней нагрузкой, характера задачи строительной механики, относящейся к этой конструкции, степе­ни точности, предъявляемой к расчету, может бить перенесена из одного класса в другой. Так, например, тонкостенный стержень, обладающий в поперечном сечении жестким закрытым профи­лем, при изгибном кручении во многих случаях может быть отне­сен к категории стержней оплошного сечения.

Точно также при решении некоторых специальных задач по теории стержней сплошного сечения приходится учитывать допол­нительные факторы, связанные с депланацией таких стержней, и пользоваться, по существу, вариационными методами теории тон­костенных стержней, распространяя и обобщая эти методы в своей физической концепции на стержни сплошного поперечного сечения. К таким задачам относится, например, задача о напряже­ниях и деформациях рельса, балки прямоугольного сечения, балок и плит, лежащих на упругом основании и др.

В данной части методических указаний рассматривается ме­тодика расчета тонкостенных стершей, теория расчета которых была разработана В.З. Власовым. По этой теории тонкостенный стержень, имеющий в своем естественном (ненагруженном) состоянии форму цилиндрическойл оболочки или призматической складки, рассматривается как пространственная пластинчатая сплошная система, способная в каждой точке срединной поверхности воспринимать не только осевые (нормальные к сдвигающие) усилия, но также и моменты. В отношении деформации стержня, вместо обычной гипотезы плоских сечений, принимается более общая и ес­тественная гипотеза о недеформируемости контура поперечного сечения стержня. Эта гипотеза вместе с гипотезой об отсутствии деформации сдвига всрединной поверхности приводит к новому закону распределений по сечению продольных перемещений - к за­кону секториальных площадей, включающему в себя, как частиц? иду чай, закон плоских сечений,

При изучении данного раздела курса "Сопротивление матери­алов с основами теория упругости и пластичности" используются. отдел курсов "Высшая математика", "Вычислительная техника и программирование''.

 





Поделиться с друзьями:


Дата добавления: 2015-01-29; Мы поможем в написании ваших работ!; просмотров: 984 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2241 - | 2174 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.