Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Нормальное распределение, или закон Гаусса




Закон больших чисел, как мы выяснили, играет огромную роль в социоло­гии и статистике. Без него не могли бы возникнуть и успешно развиваться на­уки, занятые изучением массового поведения. Закон больших чисел гласит, что в результате взаимопогашения случайных отклонений средние, исчисленные для величин одного и того же вида, становятся типичными, отражающими действие постоянных и существенных факторов в данных условиях времени и места. Он утверждает господство средне-типичного, а это как раз то, что интересует со­циологию. Но он не говорит ничего о том, как велика та часть населения, кото­рая составляет в нормально развивающемся обществе большинство.

На этот вопрос отвечает другой закон — нормального распределения, или закон Гаусса.

Гаусс Карл Фридрих (1777—1855) —немецкий математик, иностранный член-корреспондент (1802) и иностранный почетный член (1824) Пе­тербургской АН. Еще при жизни Гаусс был удостоен почетного титула «принц математиков». Он блестяще находил практические применения результатам своих фундаментальных исследований и из конкретных за­дач прикладных областей умел извлекать проблемы, представляющие интерес для фундаментальной науки. В области прикладной математики он не только получил ряд важных результатов, но и создал новые на-

Посмотрев на все это подобным образом, я понял, как глупо я себя вел. В тот же момент я решил прекратить беспокоиться и всегда при­менять закон больших чисел. С тех пор я забыл про свою язву желудка».

Когда Эл Смит был губернатором штата Нью-Йорк, я слышал, как он отражал нападки своих по­литических противников, повторяя снова и снова: «Давайте изучим факты... давайте изучим факты». Затем он начинал приводить факты. В следующий раз, если вы или я будем беспокоиться о том, что может случиться, послушаемся мудрого старого Эла Смита: давайте изучим факты и решим, есть ли повод для нашего мучительного беспокойства. Именно так поступал Фредерик Дж. Малстедт, когда испугался, что уже лежит в могиле. Вот что он рассказал мне в период занятий на моих кур­сах для обучения взрослых в Нью-Йорке: «В начале июня 1944 года я находился в одиноч­ном окопе вблизи Омаха-Бич. Я служил в 999 роте связи, и мы только что "окопались" в Нормандии. Когда я посмотрел на этот одиночный окоп (он выглядел как яма прямоугольной формы в земле), я сказал себе: "Похоже на могилу". Когда я лег в

его и попытался заснуть, мне показалось, что я Действительно в могиле. Я невольно подумал:

Наверное, это и в самом деле моя могила". 11 часов утра начались налеты немецких бом-РДировщиков, и на нас посыпались бомбы. Я

одеревенел от страха. В первые две или три ночи я совсем не мог спать. К четвертой или пятой ночи я был почти в состоянии нервного шока. Я понял, что необходимо что-то сделать, иначе я сойду с ума. Тогда я напомнил себе, что прошло пять ночей, а я все еще жив, и все были живы в нашем подразделении. Только двое были ранены, да и то не немецкими бомбами, а осколками снарядов наших собственных зенит­ных орудий. Я решил прекратить беспокоиться и заняться чем-либо конструктивным. Я сделал толстое деревянное покрытие над своим окопом, которое защищало меня от осколков зе­нитных снарядов. Я подумал о том, что наше под­разделение занимает очень большой участок. Я сказал себе, что в этом глубоком, узком одиночном окопе можно погибнуть лишь от прямого попада­ния; и я прикинул, что шанс прямого попадания бомбы составлял даже меньше, чем один к десяти тысячам. Размышляя таким образом две ночи, я успокоился и спал даже во время бомбежек!» Чтобы одолеть привычку беспокоиться, прежде чем она одолеет вас, выполняйте правило: Изучите факты. Спросите себя: «Каковы шансы по закону больших чисел, что событие, из-за которого я беспокоюсь, когда-либо произойдет?» Сокращено по источнику: Карнеги Д. Как завое­вать друзей и оказывать влияние на людей / Пер. с англ. — М., 1989. С. 566-572.

правления в науке. Непреходящее значение для всех наук, имеющих дело с обработкой наблюдений, имеют разработанные Гауссом методы получения наиболее вероятных значений измеряемых величин. Особен­но широкую известность получил созданный Гауссом 1821-1823 гг. метод наименьших квадратов. Гауссом заложены также и основы тео­рии ошибок.

Труды Гаусса оказали большое влияние на развитие алгебры (доказа­тельство основной теоремы алгебры), теории чисел (квадратичные вы­четы), дифференциальной геометрии (внутренняя геометрия поверх­ностей), математической физики (принцип Гаусса), теории электриче­ства и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии.

Рис. 3. Нормальное распределение

Кривая Гаусса имеет гармонически выраженный, эстетически совершен­ный графический вид (рис. 3). Вероятностное распределение непрерывной случайной переменной отражает куполообразная кривая, получившая назва­ние гауссовой кривой (у нее множество названий, в том числе — симметрич­ный холм, графический колокол, колоколообразная кривая). Нормальное статистическое распределение значений переменной абсолютно симметрич­но относительно центральной оси.

Нормальное распределение встречается в нашей жизни на каждом шагу, стоит только внимательнее присмотреться. Например, если случайным образом вы­брать тысячу человек и построить гистограмму распределения их по росту, то в результате получится нормальное распределение. Оно будет иметь пик в точке, соответствующей среднему росту в группе, но при этом будет наблюдаться не­который разброс вокруг среднего. Разбросаны они весьма любопытным обра­зом: большинство значений, близких к среднему, концентрируется в центре, а незначительная часть значений, сильно отклоняющихся от среднего, равномер­но распределяется влево и вправо. На рис. 3 это выглядит так:

♦ 68% всех значений измеряемой переменной находится на расстояниине более одного стандартного отклонения от среднего, т.е. в диапазоне от -1до +1 (на языке статистики это звучит так: указанные значения лежат в ди­апазоне ± 1 стандартного отклонения от среднего);

♦ 95% — на расстоянии не более 2 стандартных отклонений, т.е. в диапа­зоне от -2 до +2 (иначе говоря: диапазон +2 стандартных отклонений содер­жит 95% значений).

Другими словами, при нормальном распределении стандартизованные на­блюдения, меньше -2 или больше +2, имеют относительную частоту менее 5% (стандартизованное наблюдение означает, что из исходного значения

вычтено среднее и результат поделен на стандартное отклонение). В результате точная форма нормального распределе­ния задана только двумя параметрами: средним значением и стандартным от­клонением.

Асимметрия распределения с длин­ным правым хвостом положительна. Если распределение имеет длинный ле­вый хвост, то его асимметрия отрица­тельна. Если эксцесс (показывающий «остроту пика» распределения) суще­ственно отличен от 0, то распределение имеет или более закругленный пик, чем нормальное, или, напротив, имеет более острый пик (возможно, имеет­ся несколько пиков).

Итак, 2/з всех значений (если мы имеем дело с нормальным распределением значений какого-либо массового явления в обществе, например количества ле­нивых и трудолюбивых, одаренных и бездарных) лежит в пределах 70%, а остав­шиеся 30% равномерно распределяются, постепенно убывая, влево и вправо. Сред­ним значением в этих двух случаях будут люди наполовину ленивые и трудолю­бивые, наполовину одаренные и бездарные. Соответственно очень талантливых в обычном обществе, если в нем нет физиологических аномалий, должно быть примерно 10%, а гениев — менее 5%. В свою очередь, совершенно бездарных — 10%, аполных идиотов — менее5%. На основе знания нормального распределе­ния событий, свойств и явлений в больших массах людей можно делать неплохие про­гнозы, в частности, отслеживать, когда об­щество переходит от состояния нормы к состоянию патологии. Таким образом, кривая Гаусса имеет не только статистическую, но и со­циальную интерпретацию. Иными словами, с ней происходит то же самое, что с законом больших чисел, у которого мы обнаружили две составляющие — гносеологическую и онтологическую.

Если в качестве средней величины принять социальную норму, то откло­нения от нее в позитивную и негативную сторону выразит знакомый нам симметричный холм. В зависимости от того, позитивным или негативным является отклонение, все формы девиаций можно расположить вдоль неко­торого континуума.

На одном полюсе этого континуума разместится группа лиц, проявля­ющих максимально осуждаемое поведение: революционеры, террористы, не-

патриоты, политические эмигранты, предатели, преступники, вандалы, ци­ники, бродяги.

На другом полюсе расположится группа с максимально одобряемыми отклонениями от нормы: национальные герои, выдающиеся артисты, спорт­смены, ученые, писатели, художники и политические лидеры, миссионеры, передовики труда.

Если бы мы провели статистические подсчеты, то оказалось бы, что в нормально развивающихся обществах в обычных условиях на каждую из этих групп пришлось бы примерно по 10—15% общей численности населения. А около 70% членов общества составили бы «твердые середняки» — люди, проявляющие лишь несущественные отклонения своих качеств и своего по­ведения от неких «норм».

Рис. 4. Пример нормального распределения храбрых и трусливых людей в достаточно большой

по размерам популяции

На рис. 4 изображено нормальное распределение случайно появляющих­ся или наблюдаемых признаков в обществе при достаточно большом коли­честве наблюдений. Выдающиеся позитивные качества (смелость, гениаль­ность, сострадание и др.) встречаются среди людей столь же редко, как и выдающиеся негативные, причем удельный вес их в общей структуре при­мерно одинаков, поскольку нормальное распределение симметрично. Но часто в силу того, что они больше других обращают на себя внимание окру­жающих, может создаваться впечатление, что их достаточно много. То же самое происходит и с отклоняющимся поведением. Преступников-злодеев — если общество развивается в нормальных условиях — бывает обычно не бо­лее 5% от общей численности населения; людей, совершивших более или менее тяжкие преступления непредумышленно и готовых встать на путь исправления, как правило, не бывает более 15%. Если эти цифры оказыва-

ются в криминальной статистике выше, то следует задуматься о том, что общество, может быть, нездорово.

Множество других социальных явлений в стабильном обществе, носящих массовый характер, распределяется по форме кривой Гаусса (рис. 5).

Рис. 5. Кривая Гауссауниверсальное средство выражения количественного распределения в обществе массовых социальных свойств, признаков, черт, явлений, процессов и т.д.

Согласно такому закону, очень храбрых, как и очень трусливых, в обще­стве всегда меньшинство. Очень одиноких и никогда не знающих одиноче­ства не более 10% всего населения. Красивые и безобразные, честные и мо­шенники, талантливые и бездарные и т.п. распределяются среди населения таким образом, что большинство (70%) — ни красивые, ни безобразные, ни гении, ни бездари. Эти качества сочетаются у них примерно в одинаковой пропорции, поэтому о большинстве из нас можно сказать, что мы в меру талантливы и бездарны, честны и бесчестны, красивы и безобразны, разум­ны и неразумны, одиноки и общительны.

Кривая Гаусса, примененная к социальным явлениям, гласит: чем ярче выражен данный признак, тем реже он встречается, и наоборот. Но подобный закон действует только при соблюдении следующих условий:

♦ данный признак должен распределяться в населении случайным обра­зом и подчиняться статистическим закономерностям;

♦ общество не должно оказывать на признак одностороннего влияния.С первым условием дело обстоит достаточно просто. Гораздо сложнее

объяснить второе условие. Вмешаться в случайное распределение признака среди населения общество может самыми разными способами. Один из них — планомерная социальная политика либо недостаток таковой (если государ­ство не борется с преступностью, то вскоре количество преступников стано­вится больше, чем это предполагается по законам статистического распре -

В17

деления). Другой способ вмешательства — не зависящие от сознательных на­мерений или действий государства серьезные нарушения в деятельности общественных институтов. Когда институт семьи терпит кризис, то количе­ство разводов резко превышает количество браков, число брошенных свои­ми родителями детей выше, чем предполагалось по законам статистическо­го распределения.

Смещение статистической кривой особенно наглядно проявляется в со­циально-классовой структуре. Численность бедных в США 14%, богатых — 5%, зажиточных — 81%; в России соответственно 40-70%, 3-10%, 10-40% (оценки приблизительные, экспертные). При случайном распределении кар­тина должна быть иной: 5% очень богатых, 10% зажиточных, 70% — ни бо­гатых, ни бедных, 10% обедневших, 5% очень бедных. Однако практически ни одно общество, ни одна страна в мире не подчиняется такой закономер­ности. Объяснение кроется в том, что социально-классовая пирамида пред­ставляет собой результат действия множества неслучайных факторов: помощь правительства бедным, наследование имущества и аккумуляция богатства, сращение институтов власти и бизнеса, дифференциальная оплата труда в зависимости от квалификации и трудового вклада и др. Воздействуя на со­циальную пирамиду, общество добивается нужных целей и принятия выгод­ных ему моделей поведения. В частности, оно заинтересовано в том, чтобы у большинства людей складывалась мотивация к достижениям, ориентация на вертикальную мобильность, стремление к успеху. Отсюда вытекает, что общество никогда не допустит, чтобы низы зарабатывали больше верхов.

Врезка





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 4390 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2294 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.