Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Первое уравнение Максвелла




 

В 1820 году датский физик Эрстед демонстрировал электрический ток и обнаружил, что вокруг проводника с током существует магнитное поле. Это было обнаружено по действию электрического тока на магнитные стрелки, расположенные около проводника с током. Экспериментально с помощью железных опилок или набора магнитных стрелок было установлено, что магнитные линии являются замкнутыми. Тогда можно говорить, что магнитное поле имеет вихревой характер. Математически это записывается с помощью оператора «ротор», этот оператор записывается символами или . Характеристикой магнитного поля является его напряженность , поэтому говорят о вихрях напряженности магнитного поля. Они существуют не только вокруг тока проводимости, но и вокруг тока смещения. Тогда этот экспериментальный факт можно записать с помощью уравнения:

(2.1)

(2.1.1)

Здесь - плотность тока проводимости, а - плотность тока смещения.

Формула (2.1) представляет собой первое уравнение Максвелла в дифференциальной форме. При интерпретации этого уравнения необходимо понимать следующее:

1. Уравнение (2.1) утверждает, что вокруг любого тока существует вихревое магнитное поле;

2. Выражение «электрический ток порождает магнитное поле» не совсем корректно для постоянного тока, так как не существует системы отсчета, в которой проводник с током существовал бы отдельно от магнитного поля;

3. Нельзя говорить, что постоянный ток порождает постоянное магнитное поле, так как они существуют в единстве, и здесь нет причинно-следственной связи;

4. В случае переменных полей можно говорить, что изменяющееся электрическое поле порождает магнитное поле. Но об этом речь в другом уравнении Максвелла;

5. Уравнение (2.1) является описанием бесконечно малой окрестности некоторой изучаемой точки.

Получим первое уравнение Максвелла в интегральной форме. Для этого умножим скалярно формулу (2.1) на вектор и проинтегрируем по поверхности всей площадки:

(2.2)

Применим к левой части уравнения (2.2) формулу Стокса:

(2.3)

Здесь - замкнутый контур, ограничивающий поверхность , а - проекция вектора напряженности магнитного поля на касательную к контуру. Подставляем формулу (2.3) в формулу (2.2):

(2.4)

Здесь по определению плотности тока записаны значения тока проводимости и тока смещения:

(2.5)

(2.6)

Уравнение (2.4) представляет собой первое уравнение Максвелла в интегральной форме. Оно имеет тот же смысл, что и уравнение в дифференциальной форме, только здесь речь идет о конечном замкнутом контуре и конечной площадке.

Физическая сущность первого уравнения Максвелла в интегральной форме – вокруг тока проводимости и тока смещения существуют вихри магнитного поля.





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 466 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.