x
( )
()
f (x) [ a, b ], = =b [f(a)=f(b)=0], [ a, b ] =, a<c<b, f'(x) , .. f'()=0.
1. , [ a, b ] ,
f(a)=f(b).
0 d .1 | , [ a, b ] , , (; f(x)), (.1). .1 . |
2. f (x) , [ a, b ], (.. [ a, b ] , f'(x) ).
1. , f (x) = [-1;1].
. f (x) = ,
-1 0 1 .2 | , [-1;1]. f (-1) = f (1). f ′(x)= 2/(3 ) (-1;1) . , = 0, ( ) - .2. |
1.2 ( )
()
f (x) [ a, b ] , [ a, b ] =, a<c<b, f(b) - f(a)=f'(c)(b - a).
2 1 α 0 .3 | (.3). (f(b) - f(a))/ (b - a) = 2/ BM 1= tg α = f'(c) , 1(; f(a)) 2(; f()) = f (x) (; f()). , , , = , (; f()) . |
.
1. a<c<b, c - a<b - a, c - a=θ(b - a), θ , 0 1, . . 0<θ<1. c = a+ θ(b-a), (1) :
|
|
f (b) - f (a)=(b - a) f' [a+θ(b - a)], 0<θ<1.
2. = , = + Δ,
f ( + Δ) - f ()= f' () Δ,
+ Δ. .
2. f () = 2 2 [1, 3].
. f () = 2 2 , f'() = 2 2 [1, 3]. 1 = 1 2 = 3 = , f (3) - f (1)= f' () (3-1);
f (3) = 2×3 32 = -3, f (1) = 2×1 12 = 1, f' ()= 2 2. -3 1 = (2 2) ×2. , = 2.
1.3.
( )
()
f (x) φ (x) , [ a, b ] , φ' (x) , [ a, b ] = , a<c<b,
. , ,
, (
(b a))
a<c1<b, a<c2<b. , 1≠2, , , .
2.