Механическое воздействие набегающего потока на самолет сводится к нагрузкам, непрерывно распределенным по его поверхности. Для удобства изучения эти распределенные нагрузки приводят к результирующей силе, приложенной в центре масс самолета, которая называется аэродинамической силой и обозначается (см. рис. 22), а также моменту вокруг центра масс, который называется аэродинамическим моментом и обозначается .
Рис. 22. Аэродинамическая сила и аэродинамический момент, действующие на самолет при его обтекании набегающим потоком
Теоретические и экспериментальные исследования показали, что величина аэродинамической силы прямопропорциональна скоростному напору набегающего потока и характерной площади обтекаемого тела S:
, (32)
где CR – коэффициент пропорциональности, который носит название коэффициента аэродинамической силы.
Аэродинамический момент также прямопропорционален скоростному напору , характерной площади S и характерному линейному размеру обтекаемого тела l:
, (33)
где m – коэффициент пропорциональности, который называется коэффициентом аэродинамического момента.
За характерную площадь и характерный размер берутся соответственно площади и размеры тех частей самолета, которые вносят основную долю в создание рассчитываемой силы или момента.
Разложим аэродинамическую силу на составляющие по осям связанной и скоростной систем координат. В связанной системе координат эти проекции обозначаются и называются следующим образом:
– аэродинамическая продольная сила;
– аэродинамическая нормальная сила;
– аэродинамическая поперечная сила.
В скоростной системе координат:
– сила лобового сопротивления;
– аэродинамическая подъемная сила;
– аэродинамическая боковая сила.
На рис. 23 показаны проекции аэродинамической силы на оси связанной и скоростной систем координат при отсутствии скольжения.
Рис. 23. Разложение аэродинамической силы по осям связанной и скоростной систем координат при b = 0
В дальнейшем мы будем иметь дело в основном с проекциями аэродинамической силы на оси скоростной системы координат. Воспользовавшись формулой (32), запишем выражения для этих проекций. При этом в качестве характерной будем брать характерную площадь того элемента, который играет основную роль в создании данной силы.
Так, сила лобового сопротивления самолета складывается из сил лобового сопротивления фюзеляжа, крыла, оперения и других частей самолета. За характерную площадь можно принять площадь миделевого сечения фюзеляжа S м.ф:
, (34)
где Cxa – коэффициент лобового сопротивления.
В создании подъемной силы самолета основную роль играет крыло, поэтому в качестве характерной берется площадь крыла S кр:
, (35)
где Cya – коэффициент подъемной силы.
Аэродинамическая боковая сила в основном определяется вертикальным оперением и фюзеляжем, значительно меньший вклад в создание этой силы вносят крыло, горизонтальное оперение и другие части самолета. Поскольку вертикальное оперение является основным элементом при создании боковой силы (оно для этого предназначено), то его площадь S в.о и принимают за характерную:
, (36)
где Cza – коэффициент боковой силы.
Так как аэродинамические моменты, действующие на самолет, рассчитываются в основном относительно связанных осей координат, найдем проекции момента на оси связанной системы координат (см. рис. 24).
Рис. 24. Составляющие аэродинамического момента
в связанной системе координат
Аэродинамический момент относительно оси 0 X называется моментом крена. Он определяется в основном силами, действующими на крыло самолета и в меньшей степени – на вертикальное и горизонтальное оперения:
, (37)
где mx – коэффициент момента крена.
Аэродинамический момент относительно оси 0 Y называется моментом рыскания. Он создается силами, действующими в основном на вертикальное оперение и фюзеляж. Этот момент вычисляется по следующей формуле:
, (38)
где my – коэффициент момента рыскания;
L в.о – плечо вертикального оперения (расстояние от точки приложения аэродинамической силы, возникающей на вертикальном оперении, до центра масс самолета).
Аэродинамический момент относительно оси 0 Z называется моментом тангажа. Он создается силами, действующими на крыло, горизонтальное оперение и фюзеляж. Вертикальное оперение практически не участвует в создании момента тангажа. Момент тангажа вычисляют по формуле:
, (39)
где mz – коэффициент момента тангажа.