Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение обыкновенных дифференциальных уравнений.




Уравнение, содержащее производные от искомой функции y = y(x), называется обыкновенным дифференциальным уравнением (ОДУ).

Общий вид дифференциального уравнения:

(7.1)

где n – наивысший порядок производной, определяет порядок уравнения.

Решением ОДУ называется функция y = y(x), которая после ее подстановки в уравнение (7.1) обращает его в тождество.

Общее решение ОДУ имеет вид:

(7.2)

где C1, C2, …, Cn – постоянные интегрирования.

Задача Коши. Все условия заданы в одной, начальной точке, поэтому они называются начальными условиями.

Примеры постановки задачи Коши:

Краевая задача. Условия заданы в более чем одной точке, обычно в начальной и конечной. Условия в этом случае называются краевыми или граничными. Такая задача может возникнуть только при решении ОДУ с порядком выше первого.

Примеры краевых задач:

Численные методы решения задачи Коши для ОДУ:

Постановка задачи. Найти решение ОДУ первого порядка

на отрезке при условии

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки промежутка [ x 0, xn ].

Целью является построение таблицы

xi x 0 x 1 xn
yi y 0 y 1 yn

т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке , получим

Воспользовавшись простейшей формулой левых прямоугольников первого порядка

,

получаем явную формулу Эйлера:

, .

Порядок расчетов:

Зная , находим , затем т.д.

Геометрическая интерпретация метода Эйлера:

Пользуясь тем, что в точке x0 известно решение y (x 0) = y 0 и значение его производной , можно записать уравнение касательной к графику искомой функции в точке : . При достаточно малом шаге h ордината этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y (x 1) решения y (x) задачи Коши. Следовательно, точка пересечения касательной с прямой x = x 1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к в точке . Подставляя сюда (т.е. пересечение с прямой x = x 2), получим приближенное значение y (x) в точке x 2: и т.д. В итоге для i –й точки получим формулу Эйлера.

Явный метод Эйлера имеет первый порядок точности или аппроксимации.

Если использовать формулу правых прямоугольников: , то придем к методу

, .

Этот метод называют неявным методом Эйлера, поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

Модифицированный метод Эйлера: в данном методе вычисление состоит из двух этапов:

Данная схема называется еще методом предиктор – корректор (предсказывающее – исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Методы Рунге – Кутта: идея построения явных методов Рунге–Кутты p –го порядка заключается в получении приближений к значениям y (xi +1) по формуле вида

,

где

…………………………………………….

.

Здесь an, bnj, pn, – некоторые фиксированные числа (параметры).

При построения методов Рунге–Кутты параметры функции (an, bnj, pn) подбирают таким образом, чтобы получить нужный порядок аппроксимации.

Схема Рунге – Кутта четвертого порядка точности:

 

24.)

Метод Эйлера (метод Рунге-Кутта 1-го порядка).

 

Разобьем [a, b] на n равных частей – элементарных отрезков, x0, x1,…,xn будем называть узлами сетки, h = (b-a)/n - шаг сетки.

, ; , .

Заменим в уравнении y в точке xi её приближенной оценкой – отношением приращений (это следует из определения производной):

Тогда получаем:

Отсюда формула Эйлера:

, – номер узла

Зная y0 в точке x0 (начальное условие) можно найти y1, затем, используя уже известные значения x1 и y1, вычислить x2 и y2 и так далее.

Рассмотрим геометрическую иллюстрацию метода Эйлера. В координатах (x,y) отобразим известные данные: отрезок [a,b] на оси Х и начальное условие y0 – точка А с координатами (a, y0). Отрезок [a,b] разобьем на n равных частей, получим узлы равномерной сетки a = x0, x1, x2, …, xn = b. Вычислим значения первой производной искомой функции в точке А, используя координату этой точки и исходное уравнение y = f(x,y)

Полученное значение позволяет построить касательную к искомой функции в точке А. Эту касательную можно использовать для вычисления приближенного значения искомой функции в новом узле х1 (кривую y(x) заменяем на отрезком АВ на элементарном отрезке [x0, x1]).

 
 

 


Геометрическая иллюстрация метода Эйлера.

Зная (x1,y1), можно аналогично получить новую точку (x2,y2) и т.д.


Алгоритм расчета новой точки методом Эйлера:

 

 






Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 508 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2320 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.