Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).




Матричной форма СЛАУ- , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных -решение системы линейных алгебраических уравнений матричным методом.

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

 

 

Метод Гаусса - этот метод заключается в последовательном исключении неизвестных. Пусть в системе уравнений

первый элемент . Назовем его ведущим элементом первой строки. Поделим все элементы этой строки на и исключим x1 из всех последующих строк, начиная со второй, путем вычитания первой (преобразованной), умноженной на коэффициент при в соответствующей строке. Получим

.

Если , то, продолжая аналогичное исключение, приходим к системе уравнений с верхней треугольной матрицей

.

Из нее в обратном порядке находим все значения xi:

.

Процесс приведения к системе с треугольной матрицей называется прямым ходом, а нахождения неизвестных – обратным. В случае если один из ведущих элементов равен нулю, изложенный алгоритм метода Гаусса неприменим. Кроме того, если какие–либо ведущие элементы малы, то это приводит к усилению ошибок округления и ухудшению точности счета. Поэтому обычно используется другой вариант метода Гаусса – схема Гаусса с выбором главного элемента. Путем перестановки строк, а также столбцов с соответствующей перенумерацией коэффициентов и неизвестных добиваются выполнения условия:

, j = i+1,i+ 2, …, m;

т.е. осуществляется выбор первого главного элемента. Переставляя уравнения так, чтобы в первом уравнении коэффициент a11 был максимальным по модулю. Разделив первую строку на главный элемент, как и прежде, исключают x1 из остальных уравнений. Затем для оставшихся столбцов и строк выбирают второй главный элемент и т.д.

Алгоритм численного метода Гаусса:

Прямой ход.

а) Положить номер шага . Переобозначить все элементы расширенной матрицы через ;

б) Выбрать ведущий элемент одним из двух способов.


Первый способ (схема единственного деления). Выбрать в качестве ведущего элемента .


Второй способ (схема с выбором ведущего элемента). На k-м шаге сначала переставить оставшихся уравнений так, чтобы наибольший по модулю коэффициент при переменной попал на главную диагональ, а затем выбрать в качестве ведущего элемента .

в) каждый элемент строки, в которой находится ведущий элемент, поделить на него:

 


г) элементы строк, находящихся ниже строки с ведущим элементом, подсчитать по правилу прямоугольника, схематически показанного на рис. 10.1 (исключить элементы, стоящие ниже ведущего элемента).

Пусть рассчитывается значение на k-м шаге. Следует соединить элемент с ведущим элементом . Получена одна из диагоналей прямоугольника. Вторую диагональ образует соединение элементов и . Для нахождения значения из его текущего значения вычитается произведение элементов и , деленное на ведущий элемент;


д) если , то перейти к пункту "б", где вместо положить .

 

Если , завершить прямой ход. Получена расширенная трапециевидная матрица из элементов , соответствующая .

2. Обратный ход. Составить систему и решить ее, начиная с последнего уравнения.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 542 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2514 - | 2362 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.