Произвольного угла, их свойства
Лекции.Орг

Поиск:


Произвольного угла, их свойства




Тригонометрические функции

произвольного угла, их свойства

 

I. Рассмотрим систему координат Оху и в ней радиус-вектор

Будем рассматривать понятие угла с учетом направления поворота радиус-вектора от оси Ох. Если повернулся против движения часовой стрелки, то образованный этим радиус-вектором и положительным направлением оси Ох, назовем положительным углом (рис. 1).

 


Рис. 1

Если повернулся от оси Ох по ходу часовой стрелки, то образованный им будем называть отрицательнымуглом (рис. 1).

Если радиус-вектор повернулся от оси Ох в некотором направлении на часть полного оборота, то он образовал угол меры один градус ( ) в зависимости от направления поворота; часть от 1º называется минутой и обозначается 1'; часть от 1' называется секундой и обозначается 1''. Заданные единицы измерения вместе с направлением поворота дают возможность измерения любого угла, образованного радиус-вектором.

Кроме измерения угла в градусах используют также радианное измерение угла. Радианной мерой угланазывается отношение длины дуги, образованной поворотом конца радиус-вектора, к длине радиус-вектора с учетом направления поворота (рис.2):

(1)

где l – длина дуги; r – длина радиус-вектора.

 

 


Рис. 2

 

Для перевода градусной меры в радианную и наоборот пользуются формулами

(2)

(3)

 

II. В системе Оху рассмотрим единичную окружность с центром в начале системы координат и единичный радиус-вектор, образующий с осью Ох угол

Спроецируем конец радиус-вектора на координатные оси, получим определенные точки (рис.3). В прямоугольном треугольнике синусом острого угла называется отношение противолежащего катета к гипотенузе.

 
 

 

 


Рис. 3

Это понятие обобщается на любой угол острый и тупой, отрицательный и положительный.

Синусом угла называется проекция конца радиус-вектора, образующего этот угол, на ось Оу:

Косинусом угла называется проекция конца радиус-вектора, образующего этот угол, на ось Ох:

Тангенсом угла называется величина, равная отношению синуса угла к косинусу при условии :

Котангенсом угла называется величина, равная отношению косинуса к синусу при условии

Тангенс и котангенс угла можно определить также через проекции х и у:

 

Для того, чтобы показать геометрический смысл строят ось тангенсов. Она проходит через точку (1; 0) (касается единичной окружности), имеет такое же направление как и ось Оу и такой же масштаб на ней (рис. 4).

Для того, чтобы показать геометрический смысл радиус-вектор продолжаем до пересечения с осью тангенсов.

Полученный на оси тангенсов отрезок (с точностью до знаков) и является

 

 


Рис. 4

 

Для того, чтобы показать геометрический смысл рисуют ось котангенсов. Она проходит через точку (0; 1), имеет тоже направление и тот же масштаб. Геометрическое значение получаем после того, как продолжим радиус-вектор до пересечения с осью котангенсов (рис. 5).

 

 

 


Рис. 5

 

Секансом угла называется величина

Косекансом угла называется величина





Дата добавления: 2016-11-12; просмотров: 193 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.004 с.