Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Совместность однородной системы




 

Рассмотрим однородную систему

.

Однородная система всегда совместна, так как всегда имеет тривиальное (нулевое) решение . Выясним, когда данная система имеет нетривиальное решение.

Теорема 1. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг матрицы, составленной из коэффициентов при неизвестных, меньше числа неизвестных.

Доказательство. Пусть система совместна. Это может быть тогда и только тогда, когда найдутся числа с 1, с 2, …, с n, при подстановке которых в систему мы получим m тождеств. Эти m тождеств можно записать в виде

.

Следовательно, система векторов-столбцов матрицы А линейно зависима. А это может быть тогда и только тогда, когда ранг системы векторов-столбцов меньше n, т.е. r(A)<n.

Следствие. Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель матрицы, составленной из коэффициентов при неизвестных, равен нулю.

Доказательство. Так как r(A)<n, то столбцы матрицы линейно зависимы и, следовательно, определитель матрицы равен нулю.

 

№17

Основные определения.

Пусть К – поле. Элементы поля К мы будем называть скалярами. Под полем К можно понимать или поле действительных чисел или поле комплексных чисел.

Определение. Матрицей размера над полем К называется таблица элементов поля К, имеющую строк и столбцов.

Обозначение:

.

Определение. Элементы называются элементами матрицы, где i – номер строки, в которой находится элемент , j – номер столбца.

Определение. Матрица размеров :

называется строкой длины .

Определение. Матрица размеров :

называется столбцом высоты .

Определение. Матрица размеров называется квадратной матрицей – го порядка.

Определение. Матрица, все элементы которой равны нулю, называется нулевой.

В квадратной матрице выделяют две диагонали, как диагонали квадрата: главную диагональ и побочную диагональ.

Главную диагональ образуют элементы , т.е. элементы с одинаковыми нижними индексами.

Побочную диагональ образуют элементы .

Определение. Квадратная матрица, в которой все элементы вне главной диагонали равны 0, называется диагональной:

.

Определение. Матрица В размера называется транспонированной по отношению к матрице А размера , если к – й столбец матрицы В состоит из элементов к – й строки матрицы А, для всех .

Обозначение: .

Определение. Процесс (процедура) получения транспонированной матрицы из данной называется транспонированием матрицы.

Пример:

, .

Определение. Две матрицы и называются равными, если они имеют одинаковые размеры и для всех значений индексов выполняется равенство .

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 474 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.