Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Генеральная и выборочная дисперсия




 

Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной совокупности вокруг своего среднего значения, вводят сводную характеристику - генеральную дисперсию.

Генеральной дисперсией называют среднее арифметическое квадратов отклонений значений признака генеральной совокупности от их среднего значения .

Если все значения , ,..., признака генеральной совокупности объема N различны, то

Если же значения признака , ,..., имеют соответственно частоты , ,..., , причем , то

Пример 1. Генеральная совокупность задана таблицей распределения:

Найти генеральную дисперсию.

Решение: Найдем генеральную среднюю:

.

Найдем генеральную дисперсию:

Кроме дисперсии для характеристики рассеяния значений признака генеральной совокупности вокруг своего среднего значения пользуются сводной характеристикой - средним квадратическим отклонением.

Генеральным средним квадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии: .

Для того чтобы охарактеризовать рассеяние наблюдаемых значений количественного признака выборки вокруг своего среднего значения вводят сводную характеристику - выборочную дисперсию.

Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения .

Если все значения , ,..., признака выборки объема n различны, то

Если же значения признака , ,..., имеют соответственно частоты , ,..., , причем , то .

Пример 2. Выборочная совокупность задана таблицей распределения:

Найти выборочную дисперсию.

Решение: Найдем выборочную среднюю:

.

Найдем выборочную дисперсию:

Кроме дисперсии для характеристики рассеяния значений признака выборочной совокупности вокруг своего среднего значения пользуются сводной характеристикой - средним квадратическим отклонением.

Выборочным средним квадратическим отклонением (стандартом) называют квадратный корень из выборочной дисперсии:

Вычисление дисперсии, безразлично - выборочной или генеральной, можно упростить, используя следующую теорему.

Теорема. Дисперсия равна среднему квадратов значений признака минус квадрат общей средней: .

Пример. Найти выборочную дисперсию по данному распределению

Решение. Найдем выборочную среднюю:

.

Найдем среднюю квадратов значений признака:

.

Искомая дисперсия: .

Пусть нам необходимо по данным выборки оценить (приближенно найти) неизвестную генеральную дисперсию . Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет приводить к систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что, как можно доказать, выборочная дисперсия является смещенной оценкой другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно .

Легко «исправить» выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Достаточно для этого умножить на дробь . Сделав это, получим исправленную дисперсию, которую обычно обозначают через :

.

Исправленная дисперсия является, конечно, несмещенной оценкой генеральной дисперсии.

Итак, в качестве оценки генеральной дисперсии принимают исправленную дисперсию .

Для оценки же среднего квадратического отклонения генеральной совокупности используют «исправленное» среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:

 

10.1.11 Точность оценки, надёжность. Доверительный интервал

 

Точечной называют оценку, которая определяется одним числом. Все оценки, рассмотренные выше, - точечные. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками.

Интервальной называют оценку, которая определяется двумя числами - концами интервала. Интервальные оценки позволяют установить точность и надежность оценок (смысл этих понятий выясняется ниже).

Пусть найденная по данным выборки статистическая характеристика служит оценкой неизвестного параметра . Будем считать постоянным числом ( может быть и случайной величиной). Ясно, что тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если и , то чем меньше , тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка удовлетворяет неравенству ; можно лишь говорить о вероятности , с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по называют вероятность с которой осуществляется неравенство . Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что , равна : .

Заменив неравенство равносильным ему двойным неравенством , или , имеем

.

Это соотношение следует понимать так: вероятность того, что интервал заключает в себе (покрывает) неизвестный параметр , равна .

Доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью .

Метод доверительных интервалов разработал американский статистик Ю. Нейман, исходя из идей английского статистика Р. Фишера.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 948 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2215 - | 2158 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.